Term-End Examination

December, 2022

MMTE-002 : DESIGN AND ANALYSIS OF ALGORITHMS

Time : 2 Hours

Maximum Marks : 50

Note: (i) Answer any four out of questions 1 to 5.
(ii) Question No. $\boldsymbol{6}$ is compulsory.

1. (a) Explain what is an algorithm with the help of an example.
(b) Sort the following sequence of numbers using INSERTION-SORT showing all the steps :

$$
8,2,4,3,15
$$

(c) Build a max heap by successive insertion of the following sequence of data :

$$
5,3,17,10,84,19
$$

2. (a) Illustrate the counting sort algorithm using the following array :
$\{3,5,2,3,4,1,2,1,4,3\}$
(b) State the properties of a B-tree. Verify whether the following is a B-tree :

3. (a) Give in pseudo code the MERGE procedure of MERGE SORT algorithm. Explain it with the following arrays :

| 2 | 4 | 6 | 8 |
| :--- | :--- | :--- | :--- |\quad| 1 | 3 | 5 | 9 |
| :--- | :--- | :--- | :--- |

(b) Illustrate the depth-first algorithm using the following graph starting from v_{i} :

4. (a) Find a minimal spanning tree of the following graph using Prim's algorithm : 5

(b) Find the longest common substring of the following strings using Dynamic programming :

$$
\begin{aligned}
& \mathrm{X}=\{\mathrm{D}, \mathrm{C}, \mathrm{~B}, \mathrm{C}, \mathrm{~A}, \mathrm{D}, \mathrm{C}\} \\
& \mathrm{Y}=\{\mathrm{C}, \mathrm{~A}, \mathrm{~B}, \mathrm{D}, \mathrm{C}, \mathrm{D}\}
\end{aligned}
$$

5. (a) Show the comparisons that the naive string matching algorithm makes for the pattern:
$\mathrm{P}=a a a b$,
$\mathrm{T}=\bar{a} b a a a b a b a a a b$
(b) Define a flow network. Show that, if f_{1} and f_{2} are flows, $\alpha f_{1}+\beta f_{2}$ is also a flow, where $\alpha+\beta=1,0 \leq \alpha, \beta \leq 1$.
(c) Let $f(n)=2^{3}+4^{3}+6^{3}+\ldots \ldots .+(2 n)^{3}$. Find a function $g(n)$ such that $f(n)=\mathrm{H})(g(n)) .3$
6. Which of the following statement are true and which are false ? Justify your answer with a short proof or a counter example :
$5 \times 2=10$
(a) Any array in ascending order is a min heap.
(b) The fractional Knapsack problem can be solved using a dynamic programming based strategy.
(c) The number of keys in a B-tree of minimum degree d is at most $\frac{\left((2 t-1)^{d+1}-1\right)}{2^{d}}$.
(d) The congruence $a_{n} \equiv b(\bmod n)$ has at least one solution for any natural number a, b and n.
(e) For any weighted graph, there is a unique minimal spanning tree.
