M. Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) [M. Sc. (MACS)]

Term-End Examination
 December, 2022
 MMTE-001 : GRAPH THE ORY

Time : 2 Hours
Maximum Marks : 50
Note : Question No. 1 is compulsory. Answer any four questions from Question Nos. 2 to 7. Use of calculator is not allowed.

1. State whether the following statements are true or false. Justify your answers with a short proof or a counter-example : $5 \times 2=10$
(i) There exists an n-vertex disconnected graph with minimum degree 1 and maximum degree $n-2$.
P. T. O.
(ii) If G is a graph with diameter 2 , then $\mathrm{N}(u) \cap \mathrm{N}(v) \neq \phi \quad$ for every pair of non-adjacent vertices u and v of G.
(iii) The Petersen graph is semi-Eulerian.
(iv) Every 3-chromatic graph contains an odd cycle.
(v) Every maximal matching is a maximum matching.
2. (a) State and prove the Handshaking Lemma.
(b) Find the girth of the Petersen graph.
(c) Check whether there exists a tree with degree sequence :
$(8,6,6,6,3,3,3,1,1,1)$
3. (b) Let G be a graph with $\operatorname{diam}(\mathrm{G}) \geq 3$. Show that $\operatorname{diam}(\overline{\mathrm{G}}) \leq 3$.
(a) Find a minimum-weight spanning tree in the following graph, using Kruskal's algorithm :

4. (a) Give an example of a graph that is Hamiltonian, but not Eulerian. Justify your choice of example.
(b) For every graph $G, \chi(G) \geq \omega(G)$. True or false? Justify.
(c) Prove that every k-critical graph has minimum degree at least $k-1$.
5. (a) Define a planar graph. Give an example of a planar graph whose complement is also planar.

4
(b) Using Wagner's theorem, show that the Petersen graph is non-planar.
6. (a) Compute $\alpha(G), \beta(G)$ and $\alpha^{\prime}(G)$, where G is the graph given below :

(b) Give an example of a graph G, with $\kappa(G)<\kappa^{\prime}(G)<\delta(G)$. Justify your choice of example.
7. (a) Define a flow on the following network with value 7 .

Does there exist a flow with value 8 on this network? Why?
(b) Let G be a connected graph with blocks $\mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots \ldots, \mathrm{B}_{k}$. Show that: 4

$$
n(\mathrm{G})=\sum_{i=1}^{k} n\left(\mathrm{~B}_{i}\right)-k+1
$$

