M.Sc. (MATHEMATICS WITH APPLICATIONS

 IN COMPUTER SCIENCE) M.Sc. (MACS)Term-End Examination
December, 2022

MMT-007 : DIFFERENTIAL EQUATIONS AND NUMERICAL SOLUTIONS

Time : 2 hours Maximum Marks : 50
(Weightage : 50\%)
Note: Question no. 1 is compulsory. Answer any four questions out of the remaining questions no. 2 to 7. Use of scientific non-programmable calculator is allowed.

1. State whether the following statements are True or False. Justify your answer with the help of a short proof or a counter example.
$5 \times 2=10$
(a) Lipschitz condition is satisfied for the initial value problem

$$
y^{\prime}=\sqrt{|y|}, y(0)=0
$$

on the rectangle $|\mathrm{x}| \leq 1$ and $|\mathrm{y}| \leq 1$.
(b) If \mathcal{L} is the Laplace transform, then

$$
\mathcal{L}\left[\mathrm{t}^{2} \cos \mathrm{nt}\right]=\frac{2 \mathrm{~s}\left(\mathrm{~s}^{2}-3 \mathrm{n}^{2}\right)}{\mathrm{s}^{2}+\mathrm{n}^{2}} .
$$

(c) The interval of absolute stability of the two-stage Runge-Kutta method given by

$$
\mathrm{y}_{\mathrm{i}+1}=\mathrm{y}_{\mathrm{i}}+\frac{1}{4}\left(\mathrm{k}_{1}+3 \mathrm{k}_{2}\right),
$$

where $\mathrm{k}_{1}=\mathrm{hf}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and

$$
\mathrm{k}_{2}=\mathrm{hf}\left(\mathrm{x}_{1}+\frac{2 \mathrm{~h}}{3}, \mathrm{y}_{1}+\frac{2}{3} \mathrm{k}_{1}\right) \text { is }-2<\lambda \mathrm{h}<0 .
$$

(d) The partial differential equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+4 x \frac{\partial^{2} u}{\partial x \partial y}+\left(1-y^{2}\right) \frac{\partial^{2} u}{\partial y^{2}}=0
$$

is elliptic inside the ellipse $4 \mathrm{x}^{2}+\mathrm{y}^{2}=1$.
(e) The order of the difference method for hyperbolic equations is $\mathrm{O}\left(\mathrm{k}^{2}+\mathrm{h}^{2}\right)$.
2. (a) Find series solution near $x=0$ of the differential equation

$$
\begin{equation*}
\left(x^{2}-x\right) \frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}-2 y=0 \tag{6}
\end{equation*}
$$

(b) If \mathcal{L} is the Laplace operator, then show that

$$
\begin{equation*}
\mathcal{L}\left\{\mathrm{t}^{\mathrm{n}}\right\}=\frac{\sqrt{(\mathrm{n}+1)}}{\mathrm{s}^{\mathrm{n}+1}}, \mathrm{n}>-1, \mathrm{~s}>0 . \tag{2}
\end{equation*}
$$

(c) Using Convolution theorem, evaluate

$$
\mathcal{L}^{-1}\left\{\frac{1}{(s+1)\left(s^{2}+1\right)}\right\}
$$

3. (a) Solve the initial value problem

$$
y^{\prime}=x+y^{2}, y(0)=1
$$

on the interval $[0,0.4]$ using the Runge-Kutta second order method with $\mathrm{h}=0 \cdot 2$.
(b) Using Laplace transform technique, solve the differential equation

$$
\frac{\partial^{2} \mathrm{y}}{\partial \mathrm{t}^{2}}=\frac{\partial^{2} \mathrm{y}}{\partial \mathrm{x}^{2}}, \mathrm{x}>0, \mathrm{t}>0
$$

given that $\mathrm{y}(0, \mathrm{t})=10 \sin 2 \mathrm{t}, \mathrm{y}(\mathrm{x}, 0)=0$,

$$
\frac{\partial \mathrm{y}}{\partial \mathrm{t}}(\mathrm{x}, 0)=0, \quad \lim _{\mathrm{x} \rightarrow \infty} \mathrm{y}(\mathrm{x}, \mathrm{t})=0
$$

4. (a) Solve the boundary value problem

$$
\frac{\partial^{2} \mathrm{y}}{\partial \mathrm{x}^{2}}=2 \mathrm{y} \frac{\partial \mathrm{y}}{\partial \mathrm{x}}, \mathrm{y}(0)=\frac{1}{2}, \quad \mathrm{y}(1)=1
$$

using second order finite difference method with $\mathrm{h}=\frac{1}{3}$.
(b) Using Milne's fourth order predictor-corrector method, find $y(2)$, given

$$
\frac{d y}{d x}=\frac{1}{2}(x+y), y(0)=2
$$

where $y(0 \cdot 5)=2 \cdot 636, y(1)=3 \cdot 595$,
$\mathrm{y}(1 \cdot 5)=4 \cdot 968$. Perform two corrector iterations.
5. (a) The wave equation $\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial \mathrm{x}^{2}} \quad$ is approximated by

$$
\delta_{\mathrm{t}}^{2} \mathrm{u}_{\mathrm{i}}^{\mathrm{n}}=\frac{\mathrm{s}^{2}}{2} \delta_{\mathrm{x}}^{2}\left[\mathrm{u}_{\mathrm{i}}^{\mathrm{n}+1}+\mathrm{u}_{\mathrm{i}}^{\mathrm{n}-1}\right],
$$

where $s=\frac{k}{\mathrm{~h}}$. Investigate the stability using Von Neumann method.
(b) Solve two-dimensional Laplace equation

$$
\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=0, \quad x>0, \quad 0<y<b
$$

subject to the conditions

$$
\begin{aligned}
& \mathrm{v}(\mathrm{x}, 0)=\mathrm{f}(\mathrm{x}), \mathrm{x}>0 \\
& \mathrm{v}(\mathrm{x}, \mathrm{~b})=0, \mathrm{x}>0 \\
& \mathrm{v}(0, \mathrm{y})=0,0<\mathrm{y}<\mathrm{b},
\end{aligned}
$$

using Fourier sine transforms.
6. (a) Using the generating function for $J_{n}(x)$, prove that $J_{n-1}(x)+J_{n+1}(x)=\frac{2 n}{x} J_{n}(x)$, for integer values of n.
(b) Show that

$$
\begin{aligned}
& \mathrm{H}_{2 \mathrm{n}+1}(0)=0 \text { and } \\
& \mathrm{H}_{2 \mathrm{n}+1}^{\prime}(0)=(-1)^{\mathrm{n}} \frac{2 \mathrm{n}+2}{\underline{\underline{n}+1}} .
\end{aligned}
$$

7. (a) Solve the following boundary value problem, by determining the appropriate Green's function by using the method of variation of parameters:

$$
\mathrm{y}^{\prime \prime}+\mathrm{y}+\mathrm{f}(\mathrm{x})=0, \mathrm{y}(0)=0, \mathrm{y}(1)=0
$$

Express the solution as a definite integral.
(b) Using five-point formula, find the solution of $\nabla^{2} u=0$ in the square $0 \leq x \leq 1,0 \leq y \leq 1$ subject to the boundary conditions

$$
\begin{aligned}
& \mathrm{u}(\mathrm{x}, \mathrm{y})=\mathrm{x}+\mathrm{y} \text { on } \mathrm{x}=0, \mathrm{y}=0, \mathrm{y}=1, \\
& \mathrm{u}+\frac{\partial \mathrm{u}}{\partial \mathrm{x}}=1+\mathrm{x}+\mathrm{y} \text { on } \mathrm{x}=1
\end{aligned}
$$

Use the central difference approximation in the boundary condition. Also assume uniform step length $\mathrm{h}=\frac{1}{2}$ along the axes.

