M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination

December, 2022

MMT-003 : ALGEBRA

Time: 2 hours
Maximum Marks : 50
Note: Question no. 1 is compulsory. Answer any four questions from Questions No. 2 to 6. The use of calculators is not allowed.

1. State whether the following statements are True or False, giving reasons for the answers :
(a) A field with 2^{60} elements must have a subfield with 2^{40} elements.
(b) S_{10} has an element of order 30 .
(c) There exists a non-abelian group of order 35 .
(d) $\mathbf{Z} \times \mathbf{Z}$ is a free group.
(e) If K is a finite field and F a proper subfield, K must be separable over F.
2. (a) Define the conjugacy class of an element in a group. If G is a finite group, write down its class equation carefully explaining each term in the equation. (You need not prove the class equation).
(b) For a finitely generated group G, define the Betti number and the invariant factors of G. What is the Betti number and the invariant factors of $\mathbf{Z}^{3} \times \mathbf{Z}_{6} \times \mathbf{Z}_{8} \times \mathbf{Z}_{9}$?
(c) State the quadratic reciprocity law for odd primes p and q . Use the quadratic reciprocity law to find $\left(\frac{19}{37}\right)$.
(d) Define a complete set of residues modulo n . Check whether $\{-1,0,1\}$ is a complete set of residues modulo 3 .
3. (a) If L / K is an extension of fields, when is $\alpha \in \mathrm{L}$ algebraic over K ? Is $1+\sqrt[3]{2} \in \mathbf{R}$ algebraic over \mathbf{Q} ? Justify your answer.
(b) Define a separable polynomial over a field F.
(c) Define a symplectic matrix. Give an
example of a 2×2 symplectic matrix
different from the identity.
(d) Define each of the following :
(ii) Free group on a set S .
(iii) Defining relations of a group G with respect to a generating set X of G .
4. (a) How many non-isomorphic classes of abelian groups can there be of order 120 ? Write down a list of such groups (one from each class). How many of these groups are cyclic?
(b) Find the splitting field of $\mathrm{x}^{4}-3$ over \mathbf{Q}. Also find $[\mathrm{K}: \mathbf{Q}]$. Further, does K contain a subfield which is not normal over \mathbf{Q} ? Give reasons for your answer.
5. (a) Let r: $\mathbf{Z} \rightarrow \mathbf{Z}_{4} \times \mathbf{Z}_{7} \times \mathbf{Z}_{9}$ be the natural homomorphism defined by $\mathrm{r}(\mathrm{x})=(\mathrm{x}(\bmod 4)$, $x(\bmod 7), x(\bmod 9))$. Find a pre-image of $(2(\bmod 4), 3(\bmod 7), 5(\bmod 91))$ lying in [50, 200].
(b) If p is a prime, show that the centre of a p-group has order p^{m} for some $\mathrm{m} \in \mathbf{N}$. Deduce that every group of order p^{2} is abelian.
6. (a) Let G be a group of order 15 acting on a set S with $|S|=14$. Suppose no element of S is fixed by the entire group G. What are the possible class equations for the action of G on S ? Justify your answer.
(b) Determine whether the polynomial $\mathrm{X}^{3}+\overline{2} \mathrm{X}+\overline{1}$ is irreducible in $\mathbf{Z}_{5}[\mathrm{X}]$. From your answer determine the structure of the ring $\frac{\mathrm{Z}_{5}[\mathrm{X}]}{\left\langle\mathrm{X}^{3}+\overline{2} \mathrm{X}+\overline{1}\right\rangle}$. Is the ring finite ?

What is its order?
(c) What is the order of $(2,3)$ in $\mathbf{Z}_{6} \times \mathbf{Z}_{6}$?

