No. of Printed Pages : 4

M. Sc. (MATHEMATICS WITH

APPLICATIONS IN COMPUTER

SCIENCE) [M. Sc. (MACS)]

Term-End Examination

December, 2022

MMT-009 : MATHEMATICAL MODELLING

Time : $1\frac{1}{2}$ *Hours*

Maximum Marks : 25

Weightage: 70%

MMT-009

Note: (i) Attempt any five questions.

- *(ii) Use of scientific non-programmable calculator is allowed.*
- (a) List the *two* essentials and *two* nonessentials in the problem to develop a model to obtain good estimates for future demand so as to help the soft drink company make right decisions. 2

P. T. O.

(b) Assume that the return distribution of security is as given follows : 3

Possible return	Associated Probability	
0.01	0.2	
0.07	0.2	
0.08	0.3	
0.1	0.1	
0.15	0.2	

Find the standard deviation of the security.

2. Consider the data shown in table given below : 5

x	y
2	1
9	17
3	3
5	9
1	0

Use a best fit line to estimate the value of y for x = 6 and 8.

3. Do the stability analysis of the following Prey-Predator model under toxicant stress in which it is assumed that the predators are not affected by the toxicant because they are generally strong : 5

$$\frac{d\mathbf{N}_1}{dt} = r_0\mathbf{N}_1 - r_1\operatorname{CO}\mathbf{N}_1 - b\mathbf{N}_1\mathbf{N}_2$$
$$\frac{d\mathbf{N}_2}{dt} = -d_0\mathbf{N}_2 + \beta_0 b\mathbf{N}_1\mathbf{N}_2$$
$$\frac{d\mathbf{C}_0}{dt} = k_1\mathbf{P} - g_1\mathbf{C}_0 - m_1\mathbf{C}_0$$

where $N_{1}\left(0\right) \geq 0, N_{2}\left(0\right) \geq 0, C_{0}\left(0\right) = 0.$

- 4. (a) Differentiate between the following terms : 2
 - (i) Linear and Non-linear models
 - (ii) Static and Dynamic models
 - (b) For the equation :

$$\frac{dc}{dt} = \lambda c, \lambda = \text{constant}$$

If the tumour cells in a particular organ of a human body are 5×10^3 , their growth increases upto 7.2×10^5 within five days. Find the value of λ .

- [4]
- 5. Obtain the optimal solution of the following transportation problem : 5

	D_1	D_2	D_3	a_i
O_1	7	3	4	2
O_2	2	1	3	3
O_3	3	4	6	5
b_j	4	1	5	

 a_i 's and b_j 's represent supplies and requirements in a real situation and the elements of the matrix represent the corresponding casts.

6. Four counters are being run on the frontier of a country to check the passports and necessary papers of the tourists. The tourists choose a counter at random. If arrivals are Poisson at the rate λ and the service time is exponential with parameter $\frac{\lambda}{2}$, what is the steady state average queue at each counter ? 5

MMT-009