M. Sc. (MATHEMATICS WITH

APPLICATIONS IN COMPUTER

SCIENCE) [M. Sc. (MACS)]

Term-End Examination

December, 2022

MMT-009 : MATHEMATICAL MODELLING

Time : $1 \frac{1}{2}$ Hours
Maximum Marks : 25

Weightage : 70\%

Note: (i) Attempt any five questions.
(ii) Use of scientific non-programmable calculator is allowed.

1. (a) List the two essentials and two nonessentials in the problem to develop a model to obtain good estimates for future demand so as to help the soft drink company make right decisions.
(b) Assume that the return distribution of security is as given follows :

Possible return	Associated Probability
0.01	0.2
0.07	0.2
0.08	0.3
0.1	0.1
0.15	0.2

Find the standard deviation of the security.
2. Consider the data shown in table given below : 5

x	y
2	1
9	17
3	3
5	9
1	0

Use a best fit line to estimate the value of y for $x=6$ and 8 .
3. Do the stability analysis of the following Prey-

Predator model under toxicant stress in which it is assumed that the predators are not
affected by the toxicant because they are generally strong :

$$
\begin{aligned}
& \frac{d \mathrm{~N}_{1}}{d t}=r_{0} \mathrm{~N}_{1}-r_{1} \mathrm{CO} \mathrm{~N}_{1}-b \mathrm{~N}_{1} \mathrm{~N}_{2} \\
& \frac{d \mathrm{~N}_{2}}{d t}=-d_{0} \mathrm{~N}_{2}+\beta_{0} b \mathrm{~N}_{1} \mathrm{~N}_{2} \\
& \frac{d \mathrm{C}_{0}}{d t}=k_{1} \mathrm{P}-g_{1} \mathrm{C}_{0}-m_{1} \mathrm{C}_{0}
\end{aligned}
$$

where $\mathrm{N}_{1}(0) \geq 0, \mathrm{~N}_{2}(0) \geq 0, \mathrm{C}_{0}(0)=0$.
4. (a) Differentiate between the following terms : 2
(i) Linear and Non-linear models
(ii) Static and Dynamic models
(b) For the equation :

$$
\frac{d c}{d t}=\lambda c, \lambda=\mathrm{constant}
$$

If the tumour cells in a particular organ of a human body are 5×10^{3}, their growth increases upto 7.2×10^{5} within five days. Find the value of λ. 3
5. Obtain the optimal solution of the following transportation problem :

	D_{1}	D_{2}	D_{3}	a_{i}
O_{1}	7	3	4	2
O_{2}	2	1	3	3
O_{3}	3	4	6	5
b_{j}	4	1	5	

a_{i} 's and b_{j} 's represent supplies and requirements in a real situation and the elements of the matrix represent the corresponding casts.
6. Four counters are being run on the frontier of a country to check the passports and necessary papers of the tourists. The tourists choose a counter at random. If arrivals are Poisson at the rate λ and the service time is exponential with parameter $\frac{\lambda}{2}$, what is the steady state average queue at each counter?

