M. Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) [M. Sc. (MACS)]

Term-End Examination

December, 2022

MMT-004 : REAL ANALYSIS

Time : 2 Hours
Maximum Marks : 50

Note: (i) Question No. 1 is compulsory.
(ii) Attempt any four questions from Q. Nos. 2 to 6 .
(iii) Calculator is not allowed.
(iv) Notations as in the study material.
P. T. O.

1. State whether the following statements are True or False. Justify your answers :
(a) The sequence $\left\{\left(\frac{1}{n}, \frac{1}{n}\right): n \in \mathbb{N}\right\}$ in \mathbb{R}^{2} under the discrete metric on \mathbb{R}^{2} converges in \mathbb{R}^{2}.
(b) A subset in a metric space is compact if it is closed.
(c) Continuous image of a path connected space is path connected.
(d) The second derivative of a linear map from \mathbb{R}^{n} to \mathbb{R}^{m} never vanishes.
(e) If $\int_{\mathrm{A}} f d m=\int_{\mathrm{A}} g d m$ for all $\mathrm{A} \in \mathrm{M}$, then $f=$ g.
2. (a) Let $\left(\mathrm{X}, d_{1}\right)$ and $\left(\mathrm{Y}, d_{2}\right)$ be metric spaces and $f: \mathrm{X} \rightarrow \mathrm{Y}$ be a function. Prove that f is continuous at a point $c \in \mathrm{X}$ if and only if given a closed set V containing $f(c)$ in Y , we can find a closed set u containing c such that $f(u) \subset \mathrm{V}$.
(b) Define directional derivatives. If

$$
\begin{array}{lr}
f(x, y, z, w)=\left(x^{2}-y^{2}, 2 x y, z x, x^{2} z^{2} w^{2}\right) & \text { and } \\
v=(2,1,-2,0), \quad \text { find } \quad f^{\prime}(1,2,-1,-2) & \text { and } \\
\mathrm{D}_{v}(1,2,-1,-2) . & 3
\end{array}
$$

(c) Define a Lebesgue measurable function. Prove that a continuous real function defined on a measurable subset of \mathbb{R} is measurable. Is a measurable function continuous ? Justify. 4
3. (a) State and prove the Gluing lemma for a finite family of closed sets. 4
(b) Making the usual assumptions, define the partial derivatives of a function from \mathbb{R}^{n} to \mathbb{R}^{m}. For the function $\mathrm{F}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ defined by $\quad \mathrm{F}(x, y, z, w)=\left(x^{2} y, x y z, x^{2}+y^{2}+z w^{2}\right)$, find $\mathrm{F}^{\prime}(a)$, where $a=(1,0,-1,0)$. 3
P. T. O.
(c) When is a non-negative measurable function defined on a measurable set of \mathbb{R} said to be Lebesgue integrable ? Find the Lebesgue integral of the function f defined by :

$$
\begin{array}{rlrl}
f(x)=6, & & x \in[1,2] \\
& =1, & & x \in(2,4) \\
& =0, & & \text { elsewhere }
\end{array}
$$

4. (a) Define completeness in a metric space. Give an example of a metric space which is not complete. Justify your choice of example.
(b) State the Inverse function theorem. Using the theorem, prove that if f is a C^{1} function defined on an open set $\mathrm{E} \subseteq \mathbb{R}^{n}$ to \mathbb{R}^{n} with $\mathrm{J} f(x) \neq 0$ for all $x \in \mathrm{E}$, then the image of $f(\mathrm{~V})$ of any open set VCE is an open set in \mathbb{R}^{n}. 4
(c) State Fatou's lemma and use it to prove the monotone convergence theorem. 3
5. (a) Prove that the continuous image of a connected set is connected in a metric space.
(b) Find the extreme values of the function

$$
\mathrm{Z}=2 x_{1}^{2}+x_{2}^{2}+3 x_{3}^{2}+10 x_{1}+8 x_{2}+6 x_{3}=50
$$

subject to the constraint, $x_{1}+x_{2}+x_{3}=20$, $x_{1}, x_{2}, x_{3} \geq 0$.
(c) Find the Fourier series for the function $f(t)=t^{2}$ on $[-\pi, \pi]$.
6. (a) (i) Define a linear system. 1
(ii) Let h be a scalar valued function. Let $\mathbb{R}: S \rightarrow S$ be the system given by :

$$
\mathbb{R} f(t)=\int_{-}^{\infty} h(\tau) f(t-\tau) d \tau
$$

Prove that the system \mathbb{R} is a linear system, where S is the set of signals. 2
P. T. O.
(b) For a function $f \in \mathrm{~L}^{1}(\mathbb{R})$ define its Fourier transform \hat{f} and prove that \hat{f} is continuous on \mathbb{R}. Prove also that for $f, g \in \mathrm{~L}^{1}(\mathbb{R}),(\hat{f} * g)(w)=f(w) g(w) . \quad 5$
(c) Find the interior and closure of the set $\mathrm{A}=\left\{(0, y) \in \mathbb{R}^{2}: 0 \leq y \leq 1\right\}$ as a subset of \mathbb{R}^{2} with standard metric. 2

