No. of Printed Pages : 6

MMT-004

M. Sc. (MATHEMATICS WITH

APPLICATIONS IN COMPUTER

SCIENCE) [M. Sc. (MACS)]

Term-End Examination

December, 2022

MMT-004 : REAL ANALYSIS

Time : 2 Hours

Maximum Marks : 50

Note: (i) Question No. 1 is compulsory.

(ii) Attempt any four questions from Q. Nos.2 to 6.

(iii) Calculator is not allowed.

(iv) Notations as in the study material.

(a) The sequence
$$\left\{ \left(\frac{1}{n}, \frac{1}{n}\right) : n \in \mathbb{N} \right\}$$
 in \mathbb{R}^2

under the discrete metric on \mathbb{R}^2 converges in \mathbb{R}^2 .

- (b) A subset in a metric space is compact if it is closed.
- (c) Continuous image of a path connected space is path connected.
- (d) The second derivative of a linear map from

 \Box n to \Box m never vanishes.
- (e) If $\int_{A} f \, dm = \int_{A} g \, dm$ for all $A \in M$, then f = g.
- 2. (a) Let (X, d₁) and (Y, d₂) be metric spaces and f : X → Y be a function. Prove that f is continuous at a point c ∈ X if and only if given a closed set V containing f(c) in Y, we can find a closed set u containing c such that f(u) ⊂ V.

(b)	Define	direct	tional	derivatives.	If
	f(x, y, z, v)	$(x^2) = (x^2)^2$	$y^2 - y^2, 2$	$xy, zx, x^2 z^2 w^2)$	and
	v = (2, 1, -	2,0),	find	f'(1, 2, -1, -2)	and
	$D_{v}(1, 2, -1,$. –2) .			3

- (c) Define a Lebesgue measurable function.
 Prove that a continuous real function defined on a measurable subset of ℝ is measurable. Is a measurable function continuous? Justify.
- 3. (a) State and prove the Gluing lemma for a finite family of closed sets.
 - (b) Making the usual assumptions, define the partial derivatives of a function from ℝⁿ to ℝ^m. For the function F: ℝ⁴ → ℝ³ defined by F(x, y, z, w) = (x²y, xyz, x² + y² + zw²), find F'(a), where a = (1, 0, -1, 0).

P. T. O.

(c) When is a non-negative measurable function defined on a measurable set of \mathbb{R} said to be Lebesgue integrable ? Find the Lebesgue integral of the function *f* defined by : 3

$$f(x) = 6,$$
 $x \in [1, 2]$
= 1, $x \in (2, 4)$
= 0, elsewhere

- 4. (a) Define completeness in a metric space.
 Give an example of a metric space which is not complete. Justify your choice of example.
 3
 - (b) State the Inverse function theorem. Using the theorem, prove that if *f* is a C¹ function defined on an open set E ⊆ ℝⁿ to ℝⁿ with Jf(x) ≠ 0 for all x ∈ E, then the image of f (V) of any open set VCE is an open set in ℝⁿ.

3

- (a) Prove that the continuous image of a 5.connected set is connected in a metric 3 space.
 - Find the extreme values of the function (b) $Z = 2x_1^2 + x_2^2 + 3x_3^2 + 10x_1 + 8x_2 + 6x_3 = 50$ subject to the constraint, $x_1 + x_2 + x_3 = 20$, $x_1, x_2, x_3 \ge 0$. 3
 - Find the Fourier series for the function (c) $f(t) = t^2$ on $[-\pi, \pi]$. 4

(ii) Let h be a scalar valued function. Let $\mathbb{R}: S \to S$ be the system given by :

$$\mathbb{R} f(t) = \int_{-\infty}^{\infty} h(\tau) f(t-\tau) d\tau$$

Prove that the system \mathbb{R} is a linear system, where S is the set of signals. 2

P. T. O.

- (b) For a function f ∈ L¹(ℝ) define its Fourier transform f̂ and prove that f̂ is continuous on ℝ. Prove also that for f, g ∈ L¹(ℝ), (f̂ * g)(w) = f(w)g(w).
- (c) Find the interior and closure of the set $A = \{(0, y) \in \mathbb{R}^2 : 0 \le y \le 1\}$ as a subset of \mathbb{R}^2 with standard metric. 2

MMT-004