M. Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) [M. Sc. (MACS)] Term-End Examination
 December, 2022
 MMT-002 : LINEAR ALGEBRA

Time : $1 \frac{1}{2}$ Hours
Maximum Marks : 25

Note: Question No. 5 is compulsory. Answer any three questions from Q. Nos. 1 to 4. Use of calculators is not allowed.

1. Let T be a linear operator on \mathbf{R}^{3} whose matrix with respect to an ordered basis $\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right\}$ is $\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$. Check whether or not T is a bijection. If it is, find the matrix of
T^{-1} with respect to the ordered basis
$\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$. If T is not bijective, check
whether T is normal.
2. Find the singular value decomposition of the matrix $\left[\begin{array}{rr}2 & 1 \\ 1 & 1 \\ -1 & 3\end{array}\right]$. Hence obtain the Moore-

Penrose inverse of the given matrix.
3. (a) Write the Jordan form of the matrix $\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 2\end{array}\right]$. Is this matrix similar to $\left[\begin{array}{lll}2 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$? Give reasons for your answer.
(b) Find the QR decomposition of $\left[\begin{array}{l}3 \\ 1 \\ 0\end{array}\right]$.
4. (a) Let M and A be a metro city and a nearby small town, respectively. Each year 20\% of A's population moves to M and 5% of M 's population moves to A. What is the longterm effect of this on the populations of M and A ? Are they likely to stabilise ? Why or why not?
(b) Find a unitary matrix whose first column is $\frac{1}{\sqrt{2}}\left[\begin{array}{l}i \\ 0 \\ 1\end{array}\right]$. Further, check whether or not this unitary matrix is unitarily diagonalisable. 2
5. Which of the following statements are true ? Give reasons for your answers :
(i) The sum of two diagonalisable matrices is a diagonalisable matrix.
(ii) The only diagonalisable nilpotent matrix is the zero matrix.
(iii) There is no unitary matrix having one of its entries 2.
(iv) If A is an $n \times n$ matrix such that $\operatorname{det}(\mathrm{A})>0$, then A is a positive definite matrix.
(v) If $A \in \mathbf{M}_{n}(\mathbf{C})$ has an eigen value with algebraic multiplicity greater than one, then A cannot be normal.

