No. of Printed Pages : 4

MMT-002

M. Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) [M. Sc. (MACS)] Term-End Examination December, 2022 MMT-002 : LINEAR ALGEBRA

Time : $1\frac{1}{2}$ Hours

Maximum Marks : 25

Note : Question No. 5 is compulsory. Answer any three questions from Q. Nos. 1 to 4. Use of calculators is not allowed.

1. Let T be a linear operator on \mathbb{R}^3 whose matrix with respect to an ordered basis $\left\{ \begin{bmatrix} 1\\1\\0\end{bmatrix}, \begin{bmatrix} 1\\0\\1\end{bmatrix}, \begin{bmatrix} 0\\1\\1\end{bmatrix} \right\}$ is $\begin{bmatrix} 2 & 1 & 1\\0 & 1 & 0\\0 & 0 & 1 \end{bmatrix}$. Check whether

or not T is a bijection. If it is, find the matrix of

P. T. O.

 $\left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}.$ If T is not bijective, check

whether T is normal. 5

2. Find the singular value decomposition of the matrix $\begin{bmatrix} 2 & 1 \\ 1 & 1 \\ -1 & 3 \end{bmatrix}$. Hence obtain the Moore-

Penrose inverse of the given matrix. 5

3. (a) Write the Jordan form of the matrix

 $\begin{bmatrix} 2 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 2 \end{bmatrix}$. Is this matrix similar to $\begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$? Give reasons for your

answer.

(b) Find the QR decomposition of $\begin{bmatrix} 3\\1\\0 \end{bmatrix}$. 2

3

- 4. (a) Let M and A be a metro city and a nearby small town, respectively. Each year 20% of A's population moves to M and 5% of M's population moves to A. What is the long-term effect of this on the populations of M and A ? Are they likely to stabilise ? Why or why not ?
 - (b) Find a unitary matrix whose first column

is
$$\frac{1}{\sqrt{2}}\begin{bmatrix}i\\0\\1\end{bmatrix}$$
. Further, check whether or not

this	unitary	matrix	is	unitarily
diago	nalisable.			2

- 5. Which of the following statements are true ?Give reasons for your answers : 10
 - (i) The sum of two diagonalisable matrices is a diagonalisable matrix.

- (ii) The only diagonalisable nilpotent matrix is the zero matrix.
- (iii) There is no unitary matrix having one of its entries 2.
- (iv) If A is an n × n matrix such that det (A) > 0, then A is a positive definite matrix.
- (v) If $A \in \mathbf{M}_n(\mathbf{C})$ has an eigen value with algebraic multiplicity greater than one, then A cannot be normal.

MMT-002