MASTER OF COMPUTER APPLICATIONS (MCA) (NEW)

Term-End Examination
December, 2022

MCS-212 : DISCRETE MATHEMATICS

Time : 3 Hours
Maximum Marks : 100

Weightage : 70\%
Note: (i) Question No. 1 is compulsory
(ii) Attempt any three questions from the rest.

1. (a) Differentiate between predicate and
proposition. Also, write De Morgan's laws
for both.

(b) Use De Morgan's law to derive AND gate
from NOR gate.
(c) Explain the conditions for a relation to be an equivalence relation.
(d) Prove that $S^{*}=\left(\mathrm{S}^{*}\right)^{*}=\mathrm{S}^{* *}$, where S is a set of strings.
(e) Briefly discuss non-deterministic Turing machine.
(f) What is addition principle ? Use addition principle to solve the following case : "Say there are three political parties $\mathrm{P}_{1}, \mathrm{P}_{2}$ and P_{3} having 4,5 and 6 members respectively." In how many ways we can select two persons from same party to become President and Vice President? 5
(g) What is power set? Find the power set for the following given sets :

$$
\begin{aligned}
& \text { A : \{0, 1, 3, 5\} } \\
& \text { B : }\{\phi, \mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{E}\}
\end{aligned}
$$

(h) Briefly discuss Pigeon hole principle with suitable example.
2. (a) Using induction, verify :

$$
\sqrt{5} f_{n}=\left[\frac{1+\sqrt{5}}{2}\right]^{n}-\left[\frac{1-\sqrt{5}}{2}\right]^{n} n \geq 1
$$

(b) Define "Stirling number of the second kind." Calculate S_{3}^{2} and S_{4}^{2}.
(c) Explain Handshaking theorem with suitable example.
(d) What is a spanning tree ? Can we have a unique spanning tree ? Draw three spanning tress for the graph given below : 5

3. (a) For any two propositions x and y, verify that:

$$
\sim(x \vee y)=\sim x \wedge \sim y
$$

(b) Find the number of three-letter words that can be formed using the letters of the English alphabet. How many of them end in ' x '? How many of them have a vowel in the middle position?
(c) What is regular expression ? Find a regular expression to describe each of the following languages :
(i) $\{a, b, c\}$
(ii) $\{\wedge, a, a b b, a b b b b \ldots \ldots$.
4. (a) Differentiate between the following : 10
(i) Deterministic finite automata and Non-deterministic finite automata
(ii) Moore machines and Mealy machines
(b) Briefly discuss the Halting problem.
(c) A box contains 3 red, 3 blue and 4 white balls. In how many ways can 8 balls be drawn out of the box, one at a time provided order is important?
5. (a) Determine the recurrence relation and iterative relation for the power set $p(\mathrm{~S})$ of set 'S'.
(b) Write short notes on the following : $2 \times 5=10$
(i) Path in a graph
(ii) Circuits in a graph
(iii) Cycles in a graph
(iv) Degree of vertex
(v) Regularity of graph

