MASTER OF COMPUTER APPLICATIONS (MCA) (REVISED)
 Term-End Examination
 December, 2022
 MCS-033 : ADVANCED DISCRETE MATHEMATICS

Time : 2 Hours
Maximum Marks : 50

Note: (i) Question No. 1 is compulsory.
(ii) Attempt any three questions from the rest.

1. (a) Find the next two terms $\left(a_{n}\right) n>0$ beginning $3,5,11,21,43,85$......... Then give a recursive definition of the sequence.
(b) Show that:

$$
a_{n}=4 .(2)^{n}+7 .(3)^{n}
$$

is the solution of recurrence relation $a_{n}-5 a_{n-1}+6 a_{n-2}=0$.
(c) Find the generating function for $1,2,3,4$, $5,6, \ldots \ldots$
(d) How many vertices and edges must a graph have if its degree sequence is $4,4,3$, $3,3,2,1$?
(e) Draw the graphs of $k_{5}, k_{3 \times 3}, k_{3 \times 4}$.
2. (a) Decide whether the graphs $\mathrm{G}_{1}=\left\{\mathrm{V}_{1}, \mathrm{E}_{1}\right\}$, $\mathrm{G}_{2}=\left\{\mathrm{V}_{2}, \mathrm{E}_{2}\right\}$ are equal or isomorphic : 5
$\mathrm{V}_{1}=\{a, b, c, d\}$
$\mathrm{E}_{1}=\{\{a, b\},\{a, c\},\{a, d\},\{c, d\}\}$
$\mathrm{V}_{2}=\{a, b, c, d\}$
$\mathrm{E}_{2}=\{\{a, b\},\{a, c\},\{b, c\},\{c, d\}\}$
(b) Show that the graph k_{5} is non-planar graph.
3. (a) Show that the given graph has Hamiltonian circuit:

(b) What is the chromatic number of the graph given below?

4. (a) Solve the following recurrence relation: 5

$$
a_{n}-2 a_{n-1}=3 \times(2)^{n}
$$

(b) Use generating function to solve the recurrence relation :

$$
a_{n}=3 a_{n-1}+2 ; \quad a_{0}=1
$$

5. (a) Solve the following :

$$
y_{n+2}-y_{n+1}-2 y_{n}=n^{2}
$$

(b) Use the method of inspection to solve the recurrence:

$$
\begin{aligned}
& \qquad \begin{aligned}
b_{n} & =b_{n-1}+4 n^{3}-6 n^{2}+4 n-1 \\
\text { for } n & \geq 1 \text { and } b_{0}=1 .
\end{aligned}
\end{aligned}
$$

