M. C. A. (REVISED)/B. C. A. (REVISED) (MCA/BCA)

Term-End Examination

December, 2022

MCS-013 : DISCRETE MATHEMATICS

Time : 2 Hours
Maximum Marks : 50

Note :Question No. 1 is compulsory. Attempt any
three questions from the rest.

1. (a) Write De Morgan's laws for predicate logic and propositional logic.
(b) Show that $[(p \rightarrow q) \wedge \sim q] \rightarrow \sim p$ is a tautology, without using truth table. 4
(c) Show that $2^{n}>n^{3}$ for $n \geq 10$.
(d) Construct the logic circuit represented by the Boolean expression $\left(\mathrm{X}_{1}^{\prime} \wedge \mathrm{X}_{2}\right) \vee$ $\left(\mathrm{X}_{1} \vee \mathrm{X}_{3}\right)$, where $\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}$ are assumed inputs to the circuit. 4
(e) What is the difference between permutation and combination? If n couples are at a dance party, in how many ways can the men and women be pained for a single dance?
2. (a) If m and n are positive integers, show that:

$$
(m+n)!\geq m!+n!
$$

(b) Find inverse of the function $f(x)$, where

$$
f(x)=x^{3}-3 .
$$

(c) Show whether $\sqrt{15}$ is a rational or irrational. 4
3. (a) Find the Boolean expression corresponding to the following circuit. Also obtain the CNF of the expression : 4

(b) What is Cartesian product ? Give the geometric representation of the Cartesian product of A and B , where $\mathrm{A}=\{2,3,4\}$ and $B=\{1,4\}$. 4
(c) Let $\mathrm{A}=\{a, b, c, d\}$ and $\mathrm{B}=\{1,2,3\}$ and $\mathrm{R}=\{(a, 2),(b, 1),(c, 2),(d, 1)\}$. Is R a function? Why?2
4. (a) What is Piegonhole principle ? Explain with a suitable example. 3
(b) Determine all the integer solution to $x_{1}+x_{2}+x_{3}+x_{4}=9$, where $x_{i} \geq 1, i=1$, $2,3,4$. 3
(c) Prove by induction that $n^{3}-n$ is divisible by 3 for all positive integers. 4
5. (a) If there are 5 men and 4 women, how many circular arrangements are possible in which women don't sit adjacent to each other? 4
(b) Write the principle of duality. Find the dual of :
(i) $\sim(\mathrm{X} \wedge \mathrm{Y}) \vee \mathrm{Z}$
(ii) $(\mathrm{X} \vee \mathrm{Y}) \wedge(\mathrm{X} \wedge \mathrm{Z})$

