BACHELOR OF COMPUTER APPLICATIONS
 (BCA) (Revised)

Term-End Examination

December, 2022

BCS-042 : INTRODUCTION TO ALGORITHM DESIGN

Time : 2 hours

Maximum Marks : 50
Note: Question no. 1 is compulsory and carries 20 marks. Answer any three questions from the rest.

1. (a) Define Θ (big theta) notation. By using a basic definition, show that

$$
7 n^{2}+8 n-9=\Theta\left(n^{2}\right) .
$$

(b) Apply Bubble sort algorithm to sort the following list of numbers. Show the procedure step-by-step. Calculate the number of exchange and comparison operations required in the algorithm :

$$
\begin{array}{llllllll}
15 & 8 & 7 & 11 & 25 & 13 & 12 & 4
\end{array}
$$

(c) Solve the following recurrence problem using recursion tree method :

$$
\mathrm{T}(\mathrm{n})=4 \mathrm{~T}\left(\frac{\mathrm{n}}{2}\right)+\mathrm{n}
$$

(d) Draw any three spanning trees of the following weighted connected graph :

2. (a) Give an example for each complexity class: 3

$$
\mathrm{O}(\mathrm{n}), \quad \mathrm{O}\left(\mathrm{n}^{2}\right), \mathrm{O}(\mathrm{n} \log \mathrm{n})
$$

(b) (i) Write the Euclid algorithm to compute GCD of two non-negative integers and apply it to find $\operatorname{GCD}(325,95)$. Show all the intermediate steps. 4
(ii) Perform the complexity analysis of the above algorithm.
3. (a) Compare between Kruskal's and Prim's algorithms.
(b) Apply Strassen's algorithm to multiply two matrices $\mathrm{A}(4 \times 4)$ and $\mathrm{B}(4 \times 4)$ using divide and conquer technique and explain.
4. (a) Define the term Branch and Bound and write the problem which can be solved through this technique.
(b) Apply Dijkstra's algorithm to find the shortest path from V_{1} to all other nodes. Show all the intermediate steps and explain.

5. (a) Define the terms : path, cycle and a complete graph.
(b) Write a program to generate Fibonacci series of 10 terms and count
(i) the number of times the loop will continue, and
(ii) the number of times the assignment operations will occur.

