No. of Printed Pages : 6
BCS-012

BACHELOR OF COMPUTER APPLICATIONS (BCA) (REVISED)

Term-End Examination

December, 2022

BCS-012 : BASIC MATHEMATICS

Time : 3 Hours
Maximum Marks : 100

Note: Question number 1 is compulsory. Attempt any three questions from the remaining questions.

1. (a) If $\mathrm{A}=\left[\begin{array}{ccc}3 & 4 & -5 \\ 1 & 1 & 0 \\ 1 & 1 & 5\end{array}\right]$, show that A is row equivalent to I_{3}.
(b) Find the sum of an infinite G. P., whose first term is 28 and fourth term is $\frac{4}{49}$. 5
(c) Solve the inequality $\frac{5}{|x-3|}<7$.
(d) Evaluate $\int \frac{x^{2}}{(x+2)^{3}} d x$.
(e) For any vectors \vec{a} and \vec{b}, show that

$$
|\vec{a}+\vec{b}| \leq|\vec{a}|+|\vec{b}| .
$$

(f) Find the area bounded by the curves $y=x^{2}$ and $y^{2}=x$. Also draw graph for the same.
(g) If z is a complex number such that $|z-2 i|=|z+2 i|$, show that $\operatorname{Im}(z)=0$.
(h) Find the quadratic equation whose roots are $(2-\sqrt{3})$ and $(2+\sqrt{3})$.
2. (a) Show that:

$$
\left|\begin{array}{lll}
1 & x & x^{2} \\
1 & y & y^{2} \\
1 & z & z^{2}
\end{array}\right|=(y-x)(z-x)(z-y)
$$

(b) Find $(\sqrt{3}+i)^{3}$ by using De Moivre's theorem.
(c) If $y=a x+\frac{b}{x}$, show that:

$$
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-y=0
$$

(d) Find the points of discontinuity of the following function :

$$
f(x)=\left\{\begin{aligned}
x^{2}, & \text { if } x>0 \\
x+3, & \text { if } x \leq 0
\end{aligned}\right.
$$

3. (a) Solve the following system of linear equations using Cramer's rule :

$$
\begin{aligned}
& x+y=0 \\
& y+z=1 \\
& z+x=3
\end{aligned}
$$

P. T. 0.
(b) If the first term of an A. P. is 22, the common difference is -4 , and the sum of n terms is 64 , then find n.
(c) Find the length of the curve $y=3+\frac{x}{2}$ from $(0,3)$ to $(2,4)$.
(d) If $\vec{a}, \vec{b}, \vec{c}$ are coplanar vectors, then prove that $\vec{a}+\vec{b}, \vec{b}+\vec{c}$ and $\vec{c}+\vec{a}$ are also coplanar vectors. 5
4. (a) A child is holding string a flying kite, which is at the height of 50 m , from the ground. The wind carries away the kite horizontally, from the child, at the rate of $6.5 \mathrm{~m} / \mathrm{s}$. Determine the rate at which the kite string must be let out when the string is 130 m .
(b) Using determinants, find the area of triangle whose vertices are $(1,2),(-2,3)$ and ($-3,-4$).
(c) Using the principle of mathematical induction, prove that :

$$
\frac{1}{(1)(2)}+\frac{1}{(2)(3)}+\ldots .+\frac{1}{n(n+1)}=\frac{n}{n+1}
$$

for every natural number n.
(d) Reduce the matrix $A=\left[\begin{array}{ccc}5 & 3 & 8 \\ 0 & 1 & 1 \\ 1 & -1 & 0\end{array}\right]$ to normal form and hence find its rank. 5
5. (a) Find the vector and Cartesian equations of the line passing through the points $(-2,0,3)$ and $(3,5,-2)$. 5
(b) If $y=\ln \left[e^{x}\left(\frac{x-2}{x+2}\right)^{3 / 4}\right]$, find $\frac{d y}{d x}$.
(c) A person wishes to invest at most `12,000 in 'option A' and 'option B'. He must invest at least` 2,000 in 'option A' and at least ` 14,000 in 'option B'. If 'option A' gives return of 8% and 'option B' gives return of 10%, determine how much investment should be done in respective options to maximize the returns. 10

