POST GRADUATE DIPLOMA IN ANALYTICAL CHEMISTRY (PGDAC)

Term-End Examination

December, 2021

MCH-001 : BASIC ANALYTICAL CHEMISTRY

Time : 3 Hours
Maximum Marks : 75

Note: (i) Answer any five questions.
(ii) All questions carry equal marks.

1. (a) Classify optical methods of analysis and explain any one of these methods briefly. 5
(b) Explain significant figures and discuss rules for rounding off addition/subtraction and multiplication/division by considering suitable examples.

5
(c) Explain the criteria for rejection of data in terms of $4 d$ rule. In replicate analysis of Cu in an ore, $\%$ of Cu recorded were; 5.24, $5.25,5.28,5.19$ and 5.27. Should any of the results be rejected ? Given that rejection
quotient for 5 determinations at 90% confidence level is 0.64 .
2. (a) Explain frequency distribution curve and normal error curve.
(b) Describe various physico-chemical determinants required for preservation of samples from nutrient groups.
(c) Discuss safety aspects of a functional chemical laboratory.
3. (a) What are the emergency procedures to be followed in a chemical laboratory in case of chemical and thermal burns?
(b) Discuss various precautions followed for safe handling of glassware.
(c) Write briefly about handling of chemicals with emphasis on information on the label and explain how bulk chemicals should be transported.
4. (a) Discuss different applications of kinetic methods of analysis.
(b) Differentiate between order of reaction and molecularity with an example. Define pseudo first order reaction.
(c) Explain enzyme catalyzed reaction with a suitable example. How can it be used for the determination of an enzyme?
5. (a) Define acid and base in terms of BronstedLowry's theory. Identify the base on the left and its conjugate acid on the right in the following reactions:

$$
\mathrm{NH}_{3}+\mathrm{CH}_{3} \mathrm{OH} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{CH}_{3} \mathrm{O}^{-}
$$

$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{HClO}_{4} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}_{2}^{+}+\mathrm{ClO}_{4}^{-}$
(b) Derive an expression for ionization equilibria for a weak monoprotic acid. 5
(c) Define buffer solution. Derive an expression for calculating pH of a buffer solution. Calculate pH of a solution containing $0.01 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ and 0.01 M $\mathrm{CH}_{3} \mathrm{COONa}$. Given $\mathrm{K}_{a}=1.76 \times 10^{-5}$ at $25^{\circ} \mathrm{C}$ for acetic acid. 5
6. (a) Discuss all the requirements of a primary standard with suitable examples. Draw the nature of neutralisation plot for $10 \mathrm{~cm}^{3}$ of 0.1 M HCl with 0.1 M NaOH .
(b) Explain quinonoid theory of acid-base indicators. How colour changes in cases of phenolphthalein on the basis of quinonoid structures? (Draw the structures).

5
(c) Classify non-aqueous solvents and explain each of these 3 groups with two examples.
7. (a) What do you understand by redox indicators ? Write an example and show how it is used for studying redox reactions.
(b) Derive an expression for redox equilibrium constant.
(c) Explain the nature of metal-EDTA titration curves with a schematic diagram. Name any one indicator used in such titration.
8. (a) Discuss Volhard's method of precipitation titration between Ag^{+}and SCN^{-}. Name the indicator used and write all chemical equations.

5
(b) Explain the process of precipitation from homogeneous solution. Describe how anions could be generated by hydrolysis considering precipitation of oxalates or sulphates. Write complete chemical equation.
(c) What is the difference between colorimeter and spectrophotometer with respect to range of wavelength, accuracy of the instrument and limitations?

