M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)
 M.Sc. (MACS)

Term-End Examination
December, 2021

MMTE-001 : GRAPH THEORY

Time : 2 hours
Maximum Marks : 50
(Weightage : 50\%)
Note: Question no. 1 is compulsory. Answer any four questions from Q. Nos. 2 to 7 . Use of calculators is not allowed.

1. State whether the following statements are true or false. Justify your answers with a short proof or a counter-example.
(a) $(4,1,1)$ is a graphic sequence.
(b) The complement of a tree is a forest.
(c) A 3-regular graph either has a cut-vertex or a cut-edge.
(d) $\mathrm{K}_{20,22}$ is Eulerian.
(e) A k-chromatic graph has at least $\frac{\mathrm{k}(\mathrm{k}-1)}{2}$ edges.
2. (a) If P and P^{\prime} are two edge-disjoint paths having at least two common vertices, then show that $\mathrm{P} \cup \mathrm{P}^{\prime}$ has a cycle.
(b) Compute the number of perfect matchings in a complete graph on 2 n vertices.
(c) Prove that the following graphs are isomorphic.

G

H
3. (a) Draw an Eulerian graph G such that $3 \leq \delta(G)-\Delta(G) \leq 4$.
(b) Verify the König-Egeváry theorem for the following graph :

(c) Prove that if a graph has no odd cycles, then it is bipartite.
4. (a) If $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is a graphic sequence, then so is $\left(d_{1}^{2}, d_{2}^{2}, \ldots, d_{n}^{2}\right)$. True or false ? Justify. $\quad 3$
(b) Draw a tree T with at least 5 vertices for each of the following :
(i) $2 \operatorname{rad}(\mathrm{~T})=\operatorname{diam}(\mathrm{T})$
(ii) $\operatorname{diam}(\mathrm{T})<2 \operatorname{rad}(\mathrm{~T})$
(c) Every Hamiltonian graph is 2-connected. Prove or disprove.
5. (a) Find a minimum-weight spanning tree in the following graph, using Prim's algorithm.

(b) State and prove Ore's theorem.
6. (a) Find the chromatic number of the following graph.

(b) Let G be a planar graph having at least 3 vertices and no 3-cycles. Show that $\mathrm{m}(\mathrm{G}) \leq 2 \mathrm{n}(\mathrm{G})-4$.
(c) Draw the dual of the following planar graph.

Does the dual have any cut-vertex or cut-edge ? Justify your answer.
7. (a) Let G be a connected graph with blocks $\mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{k}}$. Show that
$n(\mathrm{G})=\sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{n}\left(\mathrm{B}_{\mathrm{i}}\right)-\mathrm{k}+1$.
(b) Show that the Peterson graph has its edge-connectivity equal to its vertex-connectivity.
(c) Define a flow on the following network, having value at least 5 .

