(b) Consider the Hopfield network whose weight matrix is given by :

$$W = \frac{1}{3} \begin{bmatrix} 0 & -2 & 2 \\ -2 & 0 & -2 \\ 2 & -2 & 0 \end{bmatrix}$$

[2]

Consider two test input vectors :

$$P_1 = \begin{bmatrix} 1 - 1 & 1 \end{bmatrix}$$
 and $P_2 = \begin{bmatrix} -1 & 1 & -1 \end{bmatrix}$

Check whether the output state vectors satisfy alignment conditions.

- (c) Write four chromosome sets, which are identified by schema S = (1 0 * 0 *). 2
- - (b) If 4x + 2y = 8 and 3x + 4y = 12 for
 - $-2 \le x \le 2$ and $-1 \le y \le 3$, find the value
 - of x and y at the end of the first iteration using genetic algorithm. 7

No. of Printed Pages : 7 MMTE-007

M. SC. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M. Sc. (MACS) Term-End Examination December, 2021 MMTE-007 : SOFT COMPUTING AND ITS APPLICATIONS

Time : 2 Hours

Maximum Marks : 50 (Weightage 50%)

Note: (i) Question No. 7 is compulsory.

- (ii) Attempt any **four** questions from Question Nos. **1** to **6**.
- *(iii)Use of non-programmable, scientific calculator is allowed.*

1. (a) Two fuzzy sets A and B are given below :

 $A = \left\{ \frac{0.2}{1}, \frac{0.5}{2}, \frac{0.8}{3} \right\}$ and $B = \left\{ \frac{1}{1}, \frac{0.6}{2}, \frac{0.2}{3} \right\}$ Determine the fuzzy relation C as a composition between fuzzy sets A and P, by

composition between fuzzy sets A and B, by using max-product.

- 3. (a) What is the role of transfer function in neural network ? Briefly discuss the following transfer functions, your discussion should include respective mathematical expressions : 4
 - (i) Threshold function
 - (ii) Linear function
 - (iii) Sigmoid function
 - (b) Compare and contrast ADALINE network with MADALINE network. Draw the decision boundaries of MADALINE to solve XOR problem. 6
- (a) Consider the following parent strings : 4.

Parent A	Parent B					
1	2					
2	3					
4	6					
9	8					
8	5					
6	1					
7	4					
3	7					
5	9					
Find the offspring	s using (i) order					
crossover and (ii) position crossover.						

MMTE-007

(b) Consider a four-input two-cluster Kohonen neural network with weights [0.1, 0.5; 0.7,0.3; 0.2, 0.9]. The input patterns are $\mathbf{I} = \begin{bmatrix} 1 & -1 & 1 & 1 \\ 1 & -1 & -1 & -1 \end{bmatrix}.$ 6

[4]

- Find the Euclidean distances to each (i) cluster for each input pattern.
- (ii) Modify and find the updated weight after the first input pattern. Use a learning rate of 0.6.
- 5. (a) Let R and S be two fuzzy relations defined as:

$$\mathbf{R} = \begin{bmatrix} 0 & 0.2 & 0.8 \\ 0.3 & 0.6 & 1.0 \end{bmatrix} \text{ and } \mathbf{S} = \begin{bmatrix} 0.3 & 0.7 & 1.0 \\ 0.5 & 1.0 & 0.6 \\ 1.0 & 0.2 & 0 \end{bmatrix}$$

Compute R \mathbf{S} using 0 max-min

composition. 4

[5]MMTE-007[6](b) A 2-input, 1-output, 2-layer feed-forward(c) Give an example of the solve the XOR pro-

- neural network has the weights of the
 hidden layer as [0.3, 0.4; 0.2, 0.8; 0.1, 0.6]
 and output layer weights are [0.2, 0.5, 0.4].
 The bias values are 0.5 and 0.4. Find the
 output of the neural network for the input
 I = [0.5 0.2]', where the activation function
 is sigmoidal function with parameter 0.2.
 - 6
- 6. (a) State Schema theorem. Write any *two* applications of Schema theorem. 4
 - (b) Determine the connectivity matrix for the
 - pattern P as given below : 4

P =	$\lceil 1 \rceil$	1	1	1	0	0	0	0	0	0
	0	0	0	0	0	0	1	1	1	1
	1	1	1	1	0	0	0	0	0	1
	1	0	1	0	1	0	1	0	1	0

(c) Give an example of the network which can solve the XOR problem by constructing the decision boundaries.

- 7. State whether the following statements are true or false. Give a short proof or a counter-example in support of your answer: 10
 - (a) Perceptron can find weights for classification type of problems that are not linearly separable.
 - (b) Every original pattern of a discrete Hopfield network with a synchronous update provides a global minimum.
 - (c) The back propagation algorithm is used for both classification and clustering.

MMTE-007

[7] MMTE-007

- (d) Parents with high fitness value, reproduce the offsprings with high fitness value, for any fitness function.
- (e) For two fuzzy sets A and B, if $\mu_A(X) = 0.3$

and $\mu_B\left(X\right)=0.9\,\text{, then }\mu_{\overline{A}\cup\overline{B}}=0.6\,\text{.}$