				[2] MM ⁻	TE-006
No. of Printed Pages : 6	MMTE-006		(ii)	What is a Monte-Carlo algorithm ? H	low is
				it different from a Las Vegas algorithm	n?2
M. Sc. (MATHEM	IATICS WITH		(iii)	Explain the Kirchhoff's law.	2
APPLICATIONS I	N COMPUTER		(iv)	Explain the terms confusion and diff	fusion
SCIENCE) M. Sc. (MACS)				in the context of cryptography.	2
Term-End Examination			(v)	Define a strong prime.	2
December, 2021		2.	(a)	Explain the need for digital signature	. 3
MMTE-006 : CRY	PTOGRAPHY		(b)	State the Coloumb postulates for a ps	seudo-
Time : 2 Hours	Maximum Marks : 50			random sequence of bits.	3
Note : Answer any fou	r questions out of		(c)	Compute $2^{21} \mod 37$ using the squar	e and
Question Nos. 1 to compulsory.	5. Question No. 6 is			multiply algorithm.	4
1 (i) Define the charact	oristic of a finite field	3.	(a)	Find the inverse of 01001100 repres	ented
What is the charact	teristic of the field \mathbf{F}_{27} ?			as an element of :	6
Justify your answer	. 2			${f F_2} [x]/\left< x^8 + x^4 + x^3 + x + 1 \right>$	

	[3] MMTE-006	[4] MMTE-006
(b)	Set up an RSA cryptosystem for	3 as the primitive root 3. If Alice chooses
	p = 11, q = 13 by choosing your own	the secret value 2 and Bob chooses the
	encryption and decryption other than	secret value 2, what is the final key ? 2
	e = 1, d = 1. Encrypt the message M = 8	5. (a) Apply the runs test to the sequence for
	using your system. 4	testing randomness : 6
(a)	Complete the padding block for the input	1001101000010000101111011
	message: 4	0111010010110110010011010
	"Ashoka statement admits lapses."	0110011100001100100111000
	(Consider 'space' is also a character) to	1100001101010111101001110
		0010001111000001101010010
	SHA-256.	1000110100000110100101101
(b)	Compute the decryption function for the	1110001001
	following affine encryption function defined	You may find the following values useful :
	over \mathbf{Z}_{400} : 4	$\chi^2_{0.05,3} = 7.81473,$
	$\overline{y} = 33\overline{x} + 122 \pmod{400}$	
		$\chi^2_{0.05,4} = 9.48773$

scheme Bob and Alice use the prime 17 and

(c) To exchange keys under Diffie-Heuman

4.

 $\chi^2_{0.05,5} = 11.0705$

[5] MMTE-006

- (b) Alice wants to use Elgamol digital signature scheme with public paramaeters p = 47, α = 2 and secret values α = 7 and β = 34. She wants to sign the message M = 20 and send it to Bob. She chooses k = 5 as the secret value. Explain the procedure that Alice will use for computing the signature. What information will she send Bob?
- 6. Which of the following statements are true and which are false ? Justify your answers : 10
 - (i) There is a finite field with 10 elements.
 - (ii) A Hash function is second pre-image resistant if it is computationally infeasible to find inputs μ_1 and $\mu_2, \mu_1 \neq \mu_2$ with
 - $h(\mu_1) = h(\mu_2).$

(iii) The RSA system is severe for all choices of modulus of encryption.

MMTE-006

(iv) The actual key length of DES is 56.

[6]

(v) No symmetric key cryptosystem can be used without secure key exchange.

MMTE-006