M. Sc. (MATHEMATICS WITH

APPLICATIONS IN COMPUTER

SCIENCE)

M. Sc. (MACS)

Term-End Examination
Dec., 2021
MMT-007 : DIFFERENTIAL EQUATIONS AND NUMERICAL SOLUTIONS

Time : 2 Hours

Maximum Marks : 50

Note: (i) Question No. 1 is compulsory.
(ii) Attempt any four questions out of Q. Nos. 2 to 7.
(iii) Use of scientific/non-programmable calculator is allowed.

1. State whether the following statements are True or False. Justify your answer with the help of a short proof or a counter-example : $\quad 5 \times 2=10$
(a) Initial value problem :

$$
\frac{d y}{d x}=\frac{y-1}{x}
$$

$y(0)=1$ has a unique solution.
(b) $\mathrm{L}\left[t^{2} \cos (a t)\right]=\frac{2 s\left(s^{2}-3 a\right)}{\left(s^{2}+a^{2}\right)^{2}}$.
(c) The second order Runge-Kutta method when applied to IVP $y^{\prime}=-100 y, y(0)=1$ will produce stable results for $0<h<\frac{1}{50}$.
(d) If Fourier cosine transform of $f(x)$ is :

$$
\mathrm{F}_{c}(n)=\frac{\cos \left(\frac{2 n \pi}{3}\right)}{(2 n+1)^{2}}
$$

where $0 \leq x \leq 1$, then :
$f(x)=1+2 \sum_{n=1}^{\infty} \frac{\cos \left(\frac{2 n \pi}{3}\right)}{(2 n+1)^{2}} \cos n \pi x$.
(e) Finite element Galerkin method is a weighted residual method and requires the variational form of the given differential equation.
2. (a) Show that:

$$
\int_{0}^{\infty} e^{-s t} \mathrm{~L}_{n}(t) d t=\frac{1}{s}\left(1-\frac{1}{s}\right)^{n}
$$

where $\mathrm{L}_{n}(t)$ is a Laguerre polynomial.
(b) Using Schmidt method with $\lambda=\frac{1}{4}$, find the solution of initial value problem :

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t}
$$

with $u(0, t)=0=u(1, t)$ and $u(x, 0)=\sin \pi x, 0 \leq x \leq 1$ with $h=\frac{1}{3} . \quad 4$
(c) Using the substitution $z=\sqrt{x}$, reduce the given equation to Bessel equation and hence find its solution :

$$
x y^{\prime \prime}+y^{\prime}+\frac{y}{4}=0
$$

3. (a) Find the power series solution of the equation :

$$
\begin{equation*}
x^{2} \frac{d^{2} y}{d x^{2}}+4 x \frac{d y}{d x}+\left(x^{2}+2\right) y=0 \tag{5}
\end{equation*}
$$

about its singular point.
(b) Construct Green's function for the following boundary value problem :

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+9 y=0 \tag{5}
\end{equation*}
$$

with $y(0)=y(1)=0$.
4. (a) Find the solution of $\nabla^{2} u=0$ in R subject to $\mathrm{R}:$ triangle $0 \leq x \leq 1, \quad 0 \leq y \leq 1$, $0 \leq x+y \leq 1$ and $u(x, y)=x^{2}-y^{2}$ on the boundary of the triangle. Assume $h=\frac{1}{4}$ and use five-point formula. 5
(b) Show that the method:

$$
y_{i+1}=\frac{4}{3} y_{i}-\frac{1}{3} y_{i-1}+\frac{2 h}{3} y_{i+1}^{\prime}
$$

is absolutely stable when applied to the equation $y^{\prime}=\lambda y, \lambda<0$.
(c) Evaluate $\mathrm{L}^{-1}\left\{\frac{1}{(s+1)\left(s^{2}+1\right)}\right\}$, using convolution theorem. 2
5. (a) Given $\frac{d y}{d x}=\frac{1}{2}\left(1+x^{2}\right) y^{2}$ and $y(0)=1$, $y(0.1)=1.06, y(0.2)=1.12, y(0.3)=1.21$, evaluate y (0.4) using Milne's predictorcorrector method. Use one corrector iteration.

6
(b) For Bessel's function, show that:

$$
\mathrm{J}_{\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \sin x
$$

6. (a) Find the solution of the initial boundary value problem :

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}, 0 \leq x \leq 1
$$

$u(x, 0)=\sin (\pi x), 0 \leq x \leq 1, \frac{\partial u}{\partial t}(x, 0)=0$, $0 \leq x \leq 1, u(0, t)=u(1, t)=0, t>0$.
by using second order explicit method with $h=\frac{1}{3}, r=\frac{1}{2}$. Integrate for two time steps.
(b) Find $\mathrm{L}^{-1}\left\{\frac{1}{s} \log \left(1+\frac{1}{s^{2}}\right)\right\}, \quad \mathrm{L}^{-1} \quad$ being

Laplace inverse transform.
7. (a) Heat conduction equation $u_{t}=u_{x x}$ is approximated by the method:

$$
u_{m}^{n+1}-u_{m}^{n-1}=\frac{2 k}{h^{2}} \delta_{k}^{2} u_{m}^{n}
$$

Find the order of the method and investigate the stability of this method using Von Neumann method.
(b) Using second order finite difference method with $h=\frac{1}{2}$, obtain the system of equations for y_{0}, y_{1} and y_{2} for solving the boundary value problem :

$$
\begin{equation*}
y^{\prime \prime}-5 y^{\prime}+6 y=3 \tag{5}
\end{equation*}
$$

with $y(0)-y^{\prime}(0)=-1$ and $y(1)+y^{\prime}(1)=1$.

MMT-007

