No. of Printed Pages : 4

MMT-006

M. Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M. Sc. (MACS)

Term-End Examination

December, 2021 MMT-006 : FUNCTIONAL ANALYSIS

Time: 2 Hours
Maximum Marks : 50

Note: (i) Question No. 6 is compulsory.
(ii) Attempt any four of the remaining questions.
(iii) Calculators are not allowed.
(iv) Notations as in the study material.

1. (a) Find an orthonormal basis for \mathbf{R}^{3} with inner product:

$$
<x, y>=x_{1} y_{1}+2 x_{2} y_{2}+3 x_{3} y_{3} .
$$

(b) Show that C [0, 1] with norm $\|f\|=|f(0)|+\|f\|_{\infty}$ is a Banach space. $\quad 3$
(c) State the closed graph theorem. If A is a linear map on a Hilbert space H such that $<\mathrm{A} x, y\rangle=\langle x, \mathrm{~A} y\rangle$ for all x, y in H , prove that A is continuous.
2. (a) Find a bounded linear functional f on l^{3} such that $f\left(e_{3}\right)=3$ and $\|f\|=3$.
(b) Show that a bounded linear operator on a Hilbert space has a nontrivial closed invariant subspace if and only if its adjoint has one such subspace.
(c) State the Riesz representation theorem for Hilbert spaces. Deduce that a family $\left\{f_{i}\right\}$ of bounded linear functionals on a Hilbert space H is bounded if the set $\left\{f_{i}(x)\right\}$ of scalars is bounded for every x in H.
3. (a) Prove that $l^{1} \subset l^{2}$. If :

$$
\mathrm{T}:\left(l^{2},\|\cdot\|_{2}\right) \rightarrow\left(l^{1},\|\cdot\|_{2}\right)
$$

is a compact operator, show that:

$$
\mathrm{T}:\left(l^{2},\|\cdot\|_{2}\right) \rightarrow\left(l^{2},\|\cdot\|_{2}\right)
$$

is also compact.
(b) Prove that there is a closed linear subspace N of c such that $c=c_{b} \oplus \mathrm{~N}$.
(c) Let D be a dense linear subspace of a normed linear space X. Without using Hahn-Banach theorem, show that every bounded linear functional f on D has a bounded linear extension g on X with $\|g\|=\|f\|$. 3
4. (a) Consider $\left(\mathbf{R}^{2},\|\cdot\|_{1}\right)$ and let $\mathrm{M}=\{(x, y)$ $\left.\in \mathbf{R}^{2}: x+y=0\right\}$. For $p=(1,0)$, find two distinct points q_{1}, q_{2} such that $d(p, \mathrm{M})=d$ $\left(p, q_{1}\right)=d\left(p, q_{2}\right)$. What happens if we take $\|\cdot\|_{2}$ in place of $\|\cdot\|_{1}$? 5
(b) Prove that a bounded linear operator A on a normed linear space has rank 1 (i.e. dim $R(A)=1)$ if and only if there are $0 \neq x_{0} \in \mathrm{X}$ and a nonzero bounded linear functional f on X such that $\mathrm{A} x=f(x) x_{0}$ for all x in X .
5. (a) Let A be a bounded linear operator on a Hilbert space H. If A is bijective, show that $R\left(A^{*}\right)$ is dense and A^{*} is bounded below and hence conclude that A has a bounded inverse.
(b) Determine the dual space of $\left(\mathbf{R}^{2},\|\cdot\|_{\infty}\right) .4$
6. State with justification, whether the following statements are True or False :
(a) If M is a linear subspace of a Hilbert space H such that $M^{\perp}=(0)$, then $M=H . \quad 2$
(b) If φ is a bounded linear functional on a normed linear space X, then there is a closed linear subspace N of X such that $\mathrm{X}=\operatorname{ker} \varphi \oplus \mathrm{N}$.

2
(c) There is a bounded linear operator $\mathrm{A} \neq 0$ on l^{1} such that $\sigma(A)=\{0\}$.

2
(d) If a Banach space X has a closed, reflexive subspace, then X is reflexive.

2
(e) If A and B are positive operators on a Hilbert space H, then $A B$ is a positive operator on H .

2

