MMT-006

(c) State the closed graph theorem. If A is a linear map on a Hilbert space H such that < Ax, y > = < x, Ay > for all x, y in H, prove that A is continuous.

[2]

- 2. (a) Find a bounded linear functional f on l^3 such that $f(e_3) = 3$ and ||f|| = 3. 3
 - (b) Show that a bounded linear operator on a Hilbert space has a nontrivial closed invariant subspace if and only if its adjoint has one such subspace.
 - (c) State the Riesz representation theorem for Hilbert spaces. Deduce that a family $\{f_i\}$ of bounded linear functionals on a Hilbert space H is bounded if the set $\{f_i(x)\}$ of scalars is bounded for every x in H. 4
- 3. (a) Prove that $l^1 \subset l^2$. If:

 $\mathbf{T}:(l^2, \left\|.\right\|_2) \to (l^1, \left\|.\right\|_2)$

is a compact operator, show that :

 $\mathbf{T}:(l^2, \left\|.\right\|_2) \to (l^2, \left\|.\right\|_2)$

is also compact.

- 4
- (b) Prove that there is a closed linear subspace N of c such that $c = c_b \oplus N$. 3

No. of Printed Pages : 4 MMT-006

M. Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER

SCIENCE) M. Sc. (MACS)

Term-End Examination

December, 2021

MMT-006 : FUNCTIONAL ANALYSIS

Time : 2 Hours Maximum Marks : 50

Note: (i) Question No. 6 is compulsory.

- *(ii) Attempt any four of the remaining questions.*
- (iii) Calculators are not allowed.
- (iv) Notations as in the study material.
- 1. (a) Find an orthonormal basis for \mathbf{R}^3 with inner product : 3

$\langle x, y \rangle = x_1 y_1 + 2x_2 y_2 + 3x_3 y_3.$

(b) Show that C [0, 1] with norm $||f|| = |f(0)| + ||f||_{\infty}$ is a Banach space. 3

(c) Let D be a dense linear subspace of a normed linear space X. Without using Hahn-Banach theorem, show that every bounded linear functional f on D has a bounded linear extension g on X with ||g|| = ||f||. 3

[3]

- 4. (a) Consider $(\mathbf{R}^2, \|.\|_1)$ and let $\mathbf{M} = \{(x, y) \in \mathbf{R}^2 : x + y = 0\}$. For p = (1, 0), find two distinct points q_1, q_2 such that $d(p, \mathbf{M}) = d(p, q_1) = d(p, q_2)$. What happens if we take $\|.\|_2$ in place of $\|.\|_1$? 5
 - (b) Prove that a bounded linear operator A on a normed linear space has rank 1 (i.e. dim R (A) = 1) if and only if there are $0 \neq x_0 \in X$ and a nonzero bounded linear functional *f* on X such that $Ax = f(x) x_0$ for all *x* in X. 5
- 5. (a) Let A be a bounded linear operator on a Hilbert space H. If A is bijective, show that R (A*) is dense and A* is bounded below and hence conclude that A has a bounded inverse.

P. T. O.

(b) Determine the dual space of $(\mathbf{R}^2, \|.\|_{\infty})$. 4

6. State with justification, whether the following statements are True *or* False :

[4]

- (a) If M is a linear subspace of a Hilbert space H such that $M^{\perp} = (0)$, then M = H. 2
- (b) If ϕ is a bounded linear functional on a normed linear space X, then there is a closed linear subspace N of X such that $X = \ker \phi \oplus N.$ 2
- (c) There is a bounded linear operator $A \neq 0$ on l^1 such that $\sigma(A) = \{0\}$. 2
- (d) If a Banach space X has a closed, reflexive subspace, then X is reflexive. 2
- (e) If A and B are positive operators on a Hilbert space H, then AB is a positive operator on H.

MMT-006

[5] MMT-006

MMT-006