PHE-11

BACHELOR OF SCIENCE (B. Sc.)

Term-End Examination

December, 2021

PHE-11 : MODERN PHYSICS

Time : 2 Hours
 Maximum Marks : 50

Note:(i) Attempt all questions. The marks for each question are indicated against it.
(ii) You may use a calculator.
(iii) The values of physical constants are given at the end.
(iv) Symbols have their usual meanings.

1. Answer any five parts :

3 each
(a) An electron is moving with a speed of $0.85 c$ in a direction opposite to that of a proton moving at the same speed. Calculate the relative velocity of the proton with respect to the electron.
(b) Compare the de-Broglie wavelengths of a 200 eV electron and a ball of mass 0.01 kg travelling at a speed of $20 \mathrm{~ms}^{-1}$.
(c) Calculate the mass of the electron when it is moving with a kinetic energy of 10 MeV .
(d) A neutron is confined to a nucleus of radius 10-14 m. Calculate the minimum uncertainty in its momentum. Also calculate the minimum kinetic energy the neutron should have.
(e) Write the spectral terms for $n=3$ for a hydrogen like atom.
(f) The half life of a radioactive element is 16 days. Calculate the time required for 60% of the element to decay.
(g) Calculate the B. E. per nucleon (in MeV) in ${ }_{6}^{12} \mathrm{C}$. Mass of $\quad{ }_{6}^{12} \mathrm{C}=12.0 \mathrm{u}$, $m_{p}=1.007276 \mathrm{u}, \quad m_{n}=1.008665 \mathrm{u}$, $m_{c}=0.00055 \mathrm{u}$ and $1 \mathrm{u}=931 \mathrm{MeV}$.
(h) Use Moseley's law to determine the frequency of an X-ray line for an L to K transition in an atom. Take $\sigma=4$ and $\mathrm{Z}=47$.
2. Answer any one part :
(a) Derive the relativistic veloicty addition formula.

5
(b) Write down the relativistic force law. Determine the magnitude of the force needed to give a proton an acceleration of $2.0 \times 10^{15} \mathrm{~ms}^{-2}$ in the direction of its motion given that $r=2$. 5
3. Answer any one part:
(a) Write the one-dimensional time-dependent Schrödinger equation and deduce the timeindependent Schrödinger equation from it.

The wave function of a particle having energy E and momentum p is given by :

$$
\psi(x, t)=\mathrm{Ae}^{i(k x-\omega t)}
$$

Is $\psi(x, t)$ normalizable ? Calculate the probability current denisty for this wave function.
$1+4+2+3$
(b) The wave function of a particle of mass m is given by $\psi(x)=\mathrm{N} e^{-a x^{2}},(0<x<\infty)$. Determine N and the expectation value of the kinetic energy of the particle. $4+6$
4. Answer any one part :
(a) Write the time-independent Schrödinger equation for a particle confined in a length segment $0<x<a$. Solve the equation and obtain the normalized wave function and energy eigen values for the particle.
$1+4+4+1$
(b) Determine the most probable value of r and the expectation value of the potential energy for the ground state of the hydrogen atom :

$$
\psi_{100}(r)=\frac{1}{\left(\pi a_{0}^{3}\right)^{1 / 2}} e^{-r / a_{0}}
$$

5. Answer any two parts :
(a) Explain the shell model of the atomic nucleus.
(b) What is a self-sustained chain reaction ? Define multiplication factor for a neutron chain reaction. State the conditions for which a nuclear reactor is (i) supercritical, (ii) critical and (iii) sub-critical. $1+1+3$
(c) List the four broad groups into which elementary particles are classified. Classify the following particles into these groups : 5

Photon, $\tau, n, \pi^{\circ}, \wedge, v_{e}$

Physical constants :

$$
\begin{aligned}
& h=6.626 \times 10^{-34} \mathrm{~J}-\mathrm{s} \\
& m_{e}=9.1 \times 10^{-31} \mathrm{~kg} \\
& m_{p}=1.6725 \times 10^{-27} \mathrm{~kg} \\
& m_{n}=1.6747 \times 10^{-27} \mathrm{~kg} \\
& \mathrm{R}=2.18 \times 10^{-18} \mathrm{~J}
\end{aligned}
$$

PHE-11

विजान स्नातक (बी. एस-सी.)

सत्रांत परीक्षा

दिसम्बर. 2021

पी.एच.ड.-11 : आधनिक भौतिकी

समय : 2 घण्टे

अधिकतम अंक : 50

नोट : (i) सभी प्रश्न कीजिए। प्रत्येक प्रश्न के अंक उसके सामने दिए गए हैं।
(ii) आप कैलकलेटर का प्रयोग कर सकते हैं।
(iii) भौतिक स्थिरांकों के मान अंत में दिये गये हैं।
(iv) प्रतीकों के अपने सामान्य अर्थ हैं।

1. किन्हीं पाँच भागों के उत्तर दीजिए : प्रत्येक 3
(क) एक इलेक्ट्रॉन और एक प्रोटॉन एक-दसरे से विपरीत दिशाओं में $0.85 c$ की समान चाल से गतिमान हैं। इलेक्ट्रॉन के सापेक्ष प्रोटॉन का आपेक्षिक वेग परिकलित कीजिए।
(ख) एक 200 eV इलेक्ट्रॉन और $20 \mathrm{~ms}^{-1}$ की चाल से गतिमान द्रव्यमान 0.01 kg की एक गेंद के डी-ब्रॉग्ली तरंगदैर्घ्यों की तलना कीजिए।
(ग) 10 MeV गतिज ऊर्जा से गतिमान एक इलेक्ट्रॉन का द्रव्यमान परिकलित कीजिए।
(घ) एक न्यट्रॉन त्रिज्या $10^{-14} \mathrm{~m}$ के एक नाभिक में परिरुद्ध है। न्यट्रॉन के संवेग में न्यनतम अनिश्चितता परिकलित कीजिए। न्यट्रॉन की न्यनतम गतिज ऊर्जा क्या होनी चाहिए, यह भी परिकलित कीजिए।
(ङ) हाइड्रोजन-सम परमाण के लिए $n=3$ के लिए स्पेक्ट्रमी पद लिखिए।
(च) एक रेडियोएक्टिव तत्व की अर्ध-आय 16 दिन है। इस तत्व के 60% भाग को क्षय होने में लगे समय की गणना कीजिए।
(छ) ${ }_{6}^{12} \mathrm{C}$ के लिए प्रति न्यक्लिऑन बंधन ऊर्जा $(\mathrm{MeV}$ की इकाइयों में) परिकलित कीजिए, यदि दिया गया हो कि :

$$
\begin{gathered}
{ }_{6}^{12} \mathrm{C} \text { का द्रव्यमान }=12.0 \mathrm{u}, \\
m_{p}=1.007276 \mathrm{u}, m_{n}=1.008665 \mathrm{u},
\end{gathered}
$$

$m_{e}=0.00055 \mathrm{u}$ और $1 \mathrm{u}=931 \mathrm{MeV}$.
(ज) मोजले के नियम का प्रयोग करके किसी परमाण के लिए L से K संक्रमण होने पर उत्पन्न X किरण रेखा की आवत्ति प्राप्त कीजिए। $\sigma=4$ और $\mathrm{Z}=47$ लें।
2. कोई एक भाग कीजिए :
(क)आपेक्षिकीय वेग योग संबंध को व्यत्पन्न कीजिए।
5
(ख)आपेक्षिकीय बल नियम लिखिए। एक प्रोटॉन को उसकी गति की दिशा में $2.0 \times 10^{15} \mathrm{~ms}^{-2}$ परिमाण का त्वरण देने के लिए आवश्यक बल के परिमाण की गणना कीजिए, यदि दिया हो कि $r=2$ है।
3. कोई एक भाग कीजिए :
(क)एकविमीय कालाश्रित श्रोडिंगर समीकरण लिखिए और उससे काल स्वतंत्र श्रोडिंगर समीकरण प्राप्त कीजिए। ऊर्जा E और संवेग p वाले एक कण का तरंग फलन है :

$$
\psi(x, t)=\mathrm{A} e^{i(k x-\omega t)}
$$

क्या इस तरंग फलन का प्रसामान्यीकरण हो सकता है ? इस तरंग फलन के लिए प्रायिकता धारा घनत्व परिकलित कीजिए।
$1+4+2+3$
(ख)द्रव्यमान m के एक कण का तरंग फलन $\psi(x)=\mathrm{N} e^{-a x^{2}},(0 \leq x<\infty)$ है।
N और कण की गतिज ऊर्जा का प्रत्याशा मान परिकलित कीजिए।
4. कोई एक भाग कीजिए :
(क)रेखाखण्ड $0<x<a$ में परिरुद्ध एक कण के लिए काल स्वतंत्र श्रोडिंगर समीकरण लिखिए। इस समीकरण का हल करके इस कण के लिए प्रसामान्यीकत तरंग फलन और ऊर्जा आइगेन मान प्राप्त कीजिए। $1+4+4+1$
(ख)हाइड्रोजन परमाण की मल अवस्था का तरंग फलन है :

$$
\psi_{100}(r)=\frac{1}{\left(\pi a_{0}^{3}\right)^{1 / 2}} e^{-r / a_{0}}
$$

इसके लिए r का सबसे अधिक प्रायिकता वाला मान और स्थितिज ऊर्जा का प्रत्याशा मान परिकलित कीजिए।
5. कोई दो भाग कीजिए :
(क) परमाण्वीय नाभिक का कोश मॉडल समझाइए।
(ख) स्वपोषी थंखला अभिक्रिया क्या होती है ? न्यट्रॉन ंखला अभिक्रिया के लिए गणक कारक की परिभाषा दीजिए। बताइए कि किन प्रतिबंधों के लिए नाभिकीय रिएक्टर (i) अतिक्रांतिक,
(ii) क्रांतिक, और (iii) उपक्रांतिक होता है।

$$
1+1+3
$$

(ग) मल कणों को मोटे तौर पर किन चार वर्गों में वर्गीकत किया जा सकता है, बताइए।
निम्नलिखित कणों को इन वर्गों में वर्गीकृत कीजिए :

फोटॉन, $\tau, n, \pi^{\circ}, \wedge, v_{e}$

भौतिक नियतांक :

$h=6.626 \times 10^{-34} \mathrm{~J}-\mathrm{s}$
$m_{e}=9.1 \times 10^{-31} \mathrm{~kg}$
$m_{p}=1.6725 \times 10^{-27} \mathrm{~kg}$
$m_{n}=1.6747 \times 10^{-27} \mathrm{~kg}$
$\mathrm{R}=2.18 \times 10^{-18} \mathrm{~J}$
PHE-11

