(b) Compare the de-Broglie wavelengths of a 200 eV electron and a ball of mass 0.01 kg travelling at a speed of 20 ms⁻¹.

[2]

- (c) Calculate the mass of the electron when it is moving with a kinetic energy of 10 MeV.
- (d) A neutron is confined to a nucleus of radius 10⁻¹⁴ m. Calculate the minimum uncertainty in its momentum. Also calculate the minimum kinetic energy the neutron should have.
- (e) Write the spectral terms for n = 3 for a hydrogen like atom.
- (f) The half life of a radioactive element is16 days. Calculate the time required for60% of the element to decay.
- (g) Calculate the B. E. per nucleon (in MeV) in ${}^{12}_{6}$ C. Mass of ${}^{12}_{6}$ C = 12.0 u, $m_p = 1.007276$ u, $m_n = 1.008665$ u, $m_c = 0.00055$ u and 1 u = 931 MeV.

No. of Printed Pages : 12

BACHELOR OF SCIENCE (B. Sc.)

Term-End Examination

December, 2021

PHE-11 : MODERN PHYSICS

Time : 2 Hours

Maximum Marks : 50

PHE-11

- Note: (i) Attempt all questions. The marks for each question are indicated against it.
 - (ii) You may use a calculator.
 - *(iii) The values of physical constants are given at the end.*
 - (iv) Symbols have their usual meanings.
- 1. Answer any *five* parts : 3 each
 - (a) An electron is moving with a speed of 0.85 c in a direction opposite to that of a proton moving at the same speed.
 Calculate the relative velocity of the proton with respect to the electron.

(h) Use Moseley's law to determine the frequency of an X-ray line for an L to K transition in an atom. Take $\sigma = 4$ and Z = 47.

[3]

- 2. Answer any *one* part :
 - (a) Derive the relativistic veloicty additionformula.5
 - (b) Write down the relativistic force law. Determine the magnitude of the force needed to give a proton an acceleration of 2.0×10^{15} ms⁻² in the direction of its motion given that r = 2.
- 3. Answer any *one* part :
 - (a) Write the one-dimensional time-dependent
 Schrödinger equation and deduce the time independent Schrödinger equation from it.

The wave function of a particle having

energy E and momentum p is given by :

 $\Psi(x,t) = \mathrm{Ae}^{i(kx - \omega t)}$

[4]

- Is $\psi(x,t)$ normalizable ? Calculate the probability current denisty for this wave function. 1+4+2+3
- (b) The wave function of a particle of mass mis given by $\psi(x) = Ne^{-ax^2}, (0 < x < \infty)$.

Determine N and the expectation value of the kinetic energy of the particle. 4+6

- 4. Answer any **one** part :
 - (a) Write the time-independent Schrödinger equation for a particle confined in a length segment 0 < x < a. Solve the equation and obtain the normalized wave function and energy eigen values for the particle.

1+4+4+1

PHE-11

[5] PHE-11

(b) Determine the most probable value of r and the expectation value of the potential energy for the ground state of the hydrogen atom :

$$\psi_{100}(r) = \frac{1}{\left(\pi a_0^3\right)^{1/2}} e^{-r/a_0}$$

- 5. Answer any *two* parts :
 - (a) Explain the shell model of the atomic nucleus.5
 - (b) What is a self-sustained chain reaction ?
 Define multiplication factor for a neutron chain reaction. State the conditions for which a nuclear reactor is (i) supercritical, (ii) critical and (iii) sub-critical. 1+1+3

[6] PHE-11 (c) List the *four* broad groups into which

elementary particles are classified. Classify the following particles into these groups : 5

Photon,
$$\tau$$
, n , π° , \wedge , υ_{e}

Physical constants :

$$\begin{split} h &= 6.626 \times 10^{-34} \, \text{J-s} \\ m_e &= 9.1 \times 10^{-31} \, \text{kg} \\ m_p &= 1.6725 \times 10^{-27} \ \text{kg} \\ m_n &= 1.6747 \times 10^{-27} \ \text{kg} \\ \text{R} &= 2.18 \times 10^{-18} \, \text{J} \end{split}$$

[7]	PHE-11		[8] PHE-11
PH	E-11 1.	किर्न्ह	ों पाँच भागों के उत्तर दीजिए : प्रत्येक 3
विज्ञान स्नातक (बी. एस-सी.)		(क)	एक इलेक्ट्रॉन और एक प्रोटॉन एक-दसरे से
			विपरीत दिशाओं में 0.85 c की समान चाल से
सत्रांत परीक्षा			गतिमान हैं। इलेक्ट्रॉन के सापेक्ष प्रोटॉन का
दिसम्बर. 2021			आपेक्षिक वेग परिकलित कोजिए।
		(ख)	एक 200 eV इलेक्ट्रॉन और 20 ms ⁻¹ की चाल
पा.एच.इ11 ः आधानक भातिका			से गतिमान द्रव्यमान 0.01 kg की एक गेंद के
समय : 2 घण्टे अधिकतम अंव	रू : 50		डी-ब्रॉग्ली तरंगदैर्घ्यों की तलना कीजिए।
नोट : (i) सभी प्रश्न कीजिए। प्रत्येक प्रश्न के अंक उसव सामने दिए गए हैं।	त उसके	(ग)	10 MeV गतिज ऊर्जा से गतिमान एक इलेक्ट्रॉन
			का द्रव्यमान परिकलित कोजिए।
		(घ)	एक न्यट्रॉन त्रिज्या $10^{-14}~{ m m}$ के एक नाभिक में
(ii) आप कैलकलेटर का प्रयोग कर सकते ह			परिरुद्ध है। न्यट्रॉन के संवेग में न्यनतम
(iii) भौतिक स्थिरांकों के मान अंत में दिये ग	। गये हैं।		अनिश्चितता परिकलित कोजिए। न्यट्रॉन को न्यनतम
			गतिज ऊर्जा क्या होनी चाहिए, यह भी परिकलित
(iv) प्रतीकों के अपने सामान्य अर्थ हैं।			कोजिए।

[9]	PHE-11		[10]	PHE-11
(ङ) हाइड्रोजन-सम परमाण के लिए n = 3	के लिए	2.	कोई एक भाग कीजिए :	
स्पेक्ट्रमी पद लिखिए।			(क)आपेक्षिकीय वेग योग संबंध	को व्यत्पन्न कीजिए।
(च)एक रेडियोएक्टिव तत्व की अर्ध-आय 1	रक रेडियोएक्टिव तत्व की अर्ध-आय 16 दिन है। इस तत्व के 60% भाग को क्षय होने में लगे समय		(ग्व) आपेश्विकीय बल नियम लि	5 गिवाग। एक पोटॉन को
इस तत्व के 60% भाग को क्षय होने में			उसकी गति की दिशा	में $2.0 \times 10^{15} \mathrm{ms}^{-2}$
को गणना कोजिए।		परिमाण का त्वरण देने के लिए आवश्य	लेए आवश्यक बल के	
$(argie) {}^{12}_6 \mathrm{C}$ के लिए प्रति न्यक्लिऑन ब	ंधन ऊर्जा		परिमाण की गणना कोजिए	, यदि दिया हो कि
(MeV की इकाइयों में) परिकलित क	ोजिए, यदि		r=2 है।	
दिया गया हो कि :		3.	कोई एक भाग कीजिए :	
${}^{12}_{6}\mathrm{C}$ का द्रव्यमान = $12.0\mathrm{u},$			(क)एकविमीय कालाश्रित श्रोडिं	गर समीकरण लिखिए
$m_p = 1.007276 \mathrm{u}, m_n = 1.008665 \mathrm{u}$	۱,		और उससे काल स्वतंत्र श्रे	डिंगर समीकरण प्राप्त
$m_e = 0.00055 \mathrm{u}$ और $1 \mathrm{u} = 931$ Me	V.		कोजिए। ऊर्जा E और संवेग	p वाले एक कण का
(ज)मोजले के नियम का प्रयोग करके कि	ो परमाण		तरंग फलन है :	
			$\Psi(x,t) = \mathrm{A}e^{i(kx-t)}$	$\cdot \omega t$)
क लिए L स K सक्रमण होने पर	उत्पन्न X-		क्या इस तरंग फलन का प्रस	गमान्यीकरण हो सकता
किरण रेखा की आवत्ति प्राप्त कीजिए	$\sigma = 4$		है ? इस तरंग फलन के	लिए प्रायिकता धारा

और Z = 47 लें।

P. T. O.

1+4+2+3

घनत्व परिकलित कोजिए।

	[11]	PHE-11	[12] PHE-11
	(ख)द्रव्यमान m के एक कण का	तरंग फलन	5. कोई दो भाग कीजिए :
	$\Psi(x) = \mathrm{N}e^{-ax^2}, (0 \le x < \infty) \frac{4}{8}$		(क)परमाण्वीय नाभिक का कोश मॉडल समझाइए। 5
	N और कण की गतिज ऊर्जा का !	प्रत्याशा मान	(ख)स्वपोषी शंखला अभिक्रिया क्या होती है ? न्यट्रॉन
	परिकलित कीजिए।	4+6	गंखला अभिक्रिया के लिए गणक कारक की
4.	कोई एक भाग कीजिए :		परिभाषा दीजिए। बताइए कि किन प्रतिबंधों के लिए नाभिकीय रिएक्टर (i) अतिक्रांतिक,
	(क)रेखाखण्ड 0 < x < a में परिरुद्ध एक	क कण के	(ii) क्रांतिक, और (iii) उपक्रांतिक होता है।
	लिए काल स्वतंत्र श्रोडिंगर समीकरण 1	लेखिए। इस	1+1+3
	समीकरण का हल करके इस कण	ा के लिए	(ग) मल कणों को मोटे तौर पर किन चार वर्गों में
	प्रसामान्यीकत तरंग फलन और ऊर्जा	आइगेन मान	वर्गीकत किया जा सकता है, बताइए।
	प्राप्त कोजिए।	1+4+4+1	निम्नलिखित कणों को इन वर्गों में वर्गीकृत
	(ख)हाइड्रोजन परमाण की मल अवस्था	का तरंग	कोजिए : 5 फोटॉन, τ, <i>n</i> , π°, ∧, υ _e
	फलन है :		भौतिक नियतांक :
$\psi_{100}\left(r ight) = rac{1}{\left(\pi a_0^3 ight)^{1/2}} e^{-r/a_0}$		$h = 6.626 \times 10^{-34} \mathrm{J} \cdot \mathrm{s}$	
	(πa_0^s)		$m_e = 9.1 \times 10^{-31} \text{ kg}$
	इसके लिए r का सबसे अधिक प्रानि	यकता वाला	$m_p = 1.6725 \times 10^{-27}$ kg
	मान और स्थितिज ऊर्जा का प्र	त्याशा मान	$m_n = 1.6747 \times 10^{-27} \text{ kg}$
	परिकलित कोजिए।	4+6	$R = 2.18 \times 10^{-18} J$ PHE-11

P. T. O.