No. of Printed Pages : 11

BACHELOR'S DEGREE PROGRAMME (BDP)

MTE-13

Term-End Examination

December, 2021

MTE-13 : DISCRETE MATHEMATICS

Time : 2 Hours Maximum Marks : 50

Note: Question No. 1 is compulsory. Answer any four questions from Q. Nos. 2 to 7. Use of calculators is not allowed.

- 1. Which of the following statements are *True* and which are *False*? Justify your answers : 10
 - (i) "P(t): $t^2 + 121 > 22t$, for all $t \ge 12$ "; is a false statement.
 - (ii) The negation of 'If A is an invertible matrix, then Adj(A) exists' is 'If A is a matrix such that Adj(A) exists, then A must be invertible'.

(iii) The order of the recurrence relation, $a_{n+3} = a_{n+1}a_n + a_{n+2}$, is two.

[2]

- (iv) The coefficient of x^{10} in the expansion of $(1+x^5+x^{10}+x^{15})^3$ is 3.
- (v) The graph, $K_{3,n}$ is Hamiltonian only if n = 3.
- 2. (a) Find the CNF of $(x_2 \wedge x_3) \vee (x_1 \wedge x_2')$. 3
 - (b) Find $\delta(G), \Delta(G)$ and $\chi(G)$ of the following graph, G: 4

- (c) Express $3x^4 + 4x^3 + 2x^2 + x$ in terms of $[x]_4, [x]_3, [x]_2$ and $[x]_1$. 3
- 3. (a) If the letters of the English Alphabet from
 A to G are arranged on a circle, find the number of arrangements possible if B and
 E are always adjacent to each other. 3

[3] MTE-13

(b) Use mathematical induction to prove that: 4 $(1 \times 1 !) + (2 \times 2 !) + (3 \times 3 !) + \dots + (n \times n !)$ = (n+1)! - 1.

for all $n \ge 1$.

(c) Draw the complement of the following graph:

Is the complement planar ? Justify your answer. 3

4. (a) Give a proof of the following statement by contradiction : 3

"If m.n is odd, then both m and n are odd."

(b) Find the sum of the series :

$$\sum_{k=0}^{\infty} \frac{(k+1)^3}{k!} = \frac{1^3}{0!} + \frac{2^3}{1!} + \dots + \frac{(n+1)^3}{n!} \dots$$

using the exponential generating function. 5

(c) "The edge chromatic number of the graph K₆ is 5." Is this true or false ? Why ? 2

[4]

- 5. (a) A box contains 6 blue and 4 yellow balls.Four balls are selected from the box at random. What is the probability that at least two of the selected balls are blue ? 4
 - (b) If the solution of the recurrence relation :

 $u_n + \alpha u_{n-1} + \beta u_{n-2} = f(n) \ \forall n \ge 2$

is $u_n = 2 - 2n + 3 \cdot 2^n$, then find the values of α, β and f(n).

6. (a) For three statements p, q, r, check the validity of the following argument, using a truth table : 5

$$r \rightarrow (q \rightarrow p)$$

$$\frac{\sim p}{\therefore (\sim r) \lor (\sim q)}$$

(b) From a survey of 120 people, the following data was obtained :
60 owned a car, 35 owned a computer, 20 owned a house, 12 owned a car and a

P. T. O.

[5] MTE-13

house, 15 owned a house and a computer, 20 owned a car and a computer, and 9 owned all the three facilities. How many people owned none of the three facilities ?

- (c) How many five-digit numbers can be formed using only even digits ?
- 7. (a) Use Fleury's algorithm to produce a Eulerian circuit for the following graph : 5

(b) Solve the recurrence relation :

$$a_n = 2a_{n-1} - a_{n-2}, \ n \ge 2$$

given $a_0 = 3, a_1 = -2$ using generating functions. 5

[6]

MTE-13

MTE-13

स्नातक उपाधि कार्यक्रम (बी.डी.पी.)

सत्रांत परीक्षा

दिसम्बर. 2021

एम.टी.ई.-13 : विविक्त गणित

- समय : 2 घण्टे अधिकतम अंक : 50
- नोट : प्रश्न सं. 1 करना जरूरी है। प्रश्न सं. 2 से 7 तक किन्हीं चार प्रश्नों के उत्तर दीजिए। कैल्कलेटरों की अनमति नहीं है।
- निम्नलिखित में से कौन-से कथन सत्य हैं और कौन-से असत्य ? अपने उत्तरों की पष्टि कीजिए : 10
 - (i) "P(t): t^2 + 121 > 22 t, सभी $t \ge 12$ के लिए" एक असत्य कथन है।
 - (ii) 'यदि A एक व्यत्क्रमणीय आव्यह है, तो Adj(A) का अस्तित्व है' का निषेध 'यदि A एक आव्यह इस प्रकार है कि Adj(A) का अस्तित्व है, तो A व्यत्क्रमणीय होनी चाहिए' है।

	[7] MTE-	13	[8] MTE-13
	(iii) पनरावत्ति संबंध $a_{n+3} = a_{n+1}a_n + a_{n+2}$ की क	टि (ग)	$3x^4 + 4x^3 + 2x^2 + x$ को $[x]_4, [x]_3, [x]_2$
	2 है।		और $[x]_1$ के पदों में व्यक्त कीजिए। 3
	(iv) $(1 + x^5 + x^{10} + x^{15})^3$ के प्रसार में x^{10}	का 3. (क) यदि अंग्रेजी वर्णमाला के अक्षरों A से G को
	गणांक 3 है।		एक वत्त पर रखा जाता है, तो संभव विन्यासों
	(v) गाफ K हैमिल्टोनीय तभी है जब v – 3 है।		की संख्या ज्ञात कीजिए जब B और E हमेशा
	(v) אויי $\mathbf{R}_{3,n}$ פויינטיווא גראן פּ אש $n = 3$ פּו		एक-दसरे के साथ हों। 3
2.	(क) $(x_2 \wedge x_3) \lor (x_1 \wedge x_2')$ का CNF इ	নে (ভ) गणितीय आगमन का प्रयोग करके सिद्ध कीजिए
	कोजिए।	3	कि सभी $n \ge 1$ के लिए : 4
	(ख) नीचे दिए हए ग्राफ, G की $\delta(G), \Delta(G)$ 3	ौर	$(1 \times 1 !) + (2 \times 2 !) + (3 \times 3 !) + \dots + (n \times n !)$
	χ(G) ज्ञात कोजिए :	4	= (n+1)! - 1
		(ग)	नीचे दिए गए ग्राफ का परक बनाइए : $f = \int_{e}^{d} f c$ क्या परक समतलीय है ? अपने उत्तर की पष्टि
	• •		कााजए। 3

- [9] MTE-13 4. (क) निम्नलिखित कथन की अंतर्विरोध द्वारा एक उपपत्ति दीजिए : 3 "यदि *m.n* विषम है, तो दोनों *m* और *n* विषम होंगे।"
 - (ख) चर घातांकीजनक फलन का उपयोग करते हएश्रेणी :

(ख) यदि पनरावत्ति सम्बन्ध :

 $u_n + \alpha u_{n-1} + \beta u_{n-2} = f(n) \ \forall n \ge 2$ का हल $u_n = 2 - 2n + 3 \cdot 2^n$ है, तो α, β और f(n) के मान ज्ञात कीजिए। 6

 [10]
 MTE-13

 6. (क) सत्य सारणी का प्रयोग करके, तीन कथनों

 p, q, r के लिए, निम्नलिखित तर्क की मान्यता

 जाँच कीजिए :
 5

 $r \to (q \to p)$

$$\frac{\sim p}{\therefore (\sim r) \lor (\sim q)}$$

(ख)	120 लोगों के एक सर्वेक्षण से निम्नलिखित
	आँकडे प्राप्त हए : 3
	60 लोगों के पास गाडी है, 35 के पास कम्प्यटर
	है, 20 के पास घर है, 12 के पास गाडी और
	घर दोनों हैं, 15 के पास घर और कम्प्यटर दोनों
	है, 20 के पास गाडी और कम्प्यटर दोनों हैं, और
	9 लोगों के पास ये तीनों सविधाएँ हैं। कितने
	लोगों के पास तीनों में से कोई भी सविधा
	नहीं है ?

7. (क) नीचे दिए गए ग्राफ के लिए फ्ल्यरी कलन विधि
 का प्रयोग करके एक ऑयलरीय परिपथ प्राप्त
 कीजिए : 5

(ख) जनक फलन के प्रयोग से पनरावत्ति संबंध :

$$a_n = 2a_{n-1} - a_{n-2}, n \ge 2$$
जहाँ $a_0 = 3, a_1 = -2$, को हल कोजिए। 5