No. of Printed Pages : 20

MTE-11

BACHELOR'S DEGREE PROGRAMME

(BDP)

Term-End Examination

December, 2021

MTE-11 : PROBABILITY AND STATISTICS

Time: 2 Hours
Maximum Marks : 50
Note: (i) Question No. 7 is compulsory.
(ii) Attempt any four questions from Question Nos. 1 to 6.
(iii) Symbols have their usual meanings.
(iv) Use of calculator is not allowed.

1. (a) The marks obtained by 45 students in statistics are as given below : 5

9253656361475860645557824239
5165553350525345452536596365
3045354915544864752042404155
524635
(i) Construct a frequency table with 8 classes.
(ii) Draw 'more than' and 'less than' ogive.
(iii) Estimate the number of students who got the marks :
(I) more than 80
(II) less than 60
(b) Let p be the probability that a coin will show head in a single toss in order to test $\mathrm{H}_{0}: p=\frac{1}{2}$ against $\mathrm{H}_{1}: p=\frac{3}{4}$. The coin is tossed 5 times and H_{0} is rejected if more than 3 heads are obtained. Find the probability of type I error and power of the test.
2. (a) There are 3 sections A, B and C of a class having 48, 40 and 52 students, respectively. If the mean intelligent quotients (IQs) per student for the sections
are 130, 125 and 100, and the standard deviations of IQ are 3, 4 and 5 respectively : 3
(i) Find the composite mean of IQ for the class.
(ii) Obtain the coefficient of variations for each of the sections, and show which section has the greatest variability.
(b) There are two salespersons Rahul (R) and Preeti (P) in a company. The probability that Rahul will be absent on any given day is 0.05 and that Preeti will be absent on any given day is 0.10 . Find the probability that on a given day :
(i) Both Rahul and Preeti would be present,
(ii) At least one of them would be absent.
(iii) Only one of them will be absent.
(c) Let $X_{1}, X_{2}, \ldots . ., X_{n}$ be a random sample of size n from a distribution with p.d.f. :

$$
f(\mathrm{X} ; \theta)=\left\{\begin{array}{cc}
\theta x^{\theta-1}, & 0<x<1, \theta>0 \\
0, & \text { elsewhere }
\end{array}\right.
$$

Obtain a maximum likelihood estimator of θ.
3. (a) The probability that a student entering in a college will graduate is 0.4 . Find the probability that out of 5 students at least one will graduate.

2
(b) Let a random variable X follows exponential distribution with p.d.f. : 4

$$
f(x)=\left\{\begin{array}{cc}
k e^{-(x / 3)} ; & x>0 \\
0 ; & x \leq 0
\end{array}\right.
$$

(i) Find k.
(ii) Compute the mean and variance of X .
(c) The equations of two regression lines obtained in a correlation analysis are as follows :

$$
3 \mathrm{X}+12 \mathrm{Y}=19,3 \mathrm{Y}+9 \mathrm{X}=46
$$

Find :
(i) The correlation coefficient between X and Y
(ii) Mean value of X and Y
(iii) Variance of X , if variance of Y is 4
4. (a) Let (X, Y) has the joint probability density function :

$$
f_{\mathrm{X}, \mathrm{Y}}(x, y)=\left\{\begin{array}{cc}
c x y(1-y) ; & 0<x, y<1 \\
0 ; & \text { otherwise }
\end{array}\right.
$$

Find c, and show that X and Y are independent. Also, find $\mathrm{P}\left[\mathrm{X}<\frac{1}{2} \cap \mathrm{Y}>\frac{1}{2}\right]$.
(b) If X is a random variable with mean 0 and variance 1 , then find an upper bound for $P[|X-\mu|>\sigma]$.
(c) For a given distribution with probability function $f(x)=\frac{1}{2^{x}}, \quad x=1,2,3, \ldots \ldots .$. , show that $\mathrm{P}(|\mathrm{X}-2| \leq 2)>\frac{1}{2}$ using Chebyshev's inequality. Hence, find the actual probability.

3
5. (a) A random number generator produces 40 $\mathrm{U}(0,1)$ random numbers, which are arranged in the following table :

Random No.	Frequency
$0.0-0.2$	8
$0.2-0.4$	9
$0.4-0.6$	6
$0.6-0.8$	9
$0.8-1.0$	8
Apply Chi-square test that random	
numbers come from uniform distribution	
U(0, 1) at $5 \% \quad$ level of significance.	
$[$ You may like to use the values	
$\chi_{(4)}^{2}=9.48, \chi_{(5)}^{2}=11.07$, and $\left.\chi_{(6)}^{2}=13.82\right]$.	

(b) For a distribution, the mean is 10 , variance is $16, b_{1}=1$ and $b_{2}=4$. Obtain the first four moments about the origin. Comment on the skewness and kurtosis of the distribution.

4
(c) Let X_{1} and X_{2} be a random sample of size

2 and $\mathrm{S}^{2}=\frac{1}{n} \Sigma\left(\mathrm{X}_{i}-\overline{\mathrm{X}}\right)^{2}$. If $\mathrm{S}^{2}=\mathrm{C}\left(\mathrm{X}_{1}-\mathrm{X}_{2}\right)^{2}$, then find the value of C . 2
6. (a) The joint p.m.f. $f(x, y)$ of two random variables X and Y is given in the following table :

4

X Y	0	1	2	3
0	$1 / 27$	$3 / 27$	$3 / 27$	$1 / 27$
1	$3 / 27$	$6 / 27$	$3 / 27$	0
2	$3 / 27$	$3 / 27$	0	0
3	$1 / 27$	0	0	0

Obtain the following :
(i) $\mathrm{P}[\mathrm{X}=2]$
(ii) $\mathrm{P}[\mathrm{Y}=1]$
(iii) $\mathrm{P}(\mathrm{X}=2 / \mathrm{Y}=1)$
(iv) Are the variables X and Y independent? Justify.
(v) Calculate $\mathrm{P}[\mathrm{X}+\mathrm{Y}=2]$.
(b) Find the moment generating function of Poisson distribution with parameter $\lambda .2$
(c) The lifetime of certain kind of battery has a mean life of 400 hours and standard deviation as 50 hours. Assuming the distribution of lifetime to be normal, find :
(i) The percentage of batteries with a lifetime of at least 470 hours.
(ii) The proportion of batteries with a lifetime between 385 and 415 hours. [You may use the values :

$$
\phi(1.4)=0.9192, \phi(0.3)=0.6179]
$$

7. Which of the following statements are true or false ? Give a short proof or a counter-example in support of your answer :
$5 \times 2=10$
(i) If variance of a random variable X is 5 , then variance of $\mathrm{Y}=2 \mathrm{X}+3$ is 13 .
(ii) If X and Y are independent random variables, then the m.g.f. :

$$
\mathrm{M}_{\mathrm{X}+\mathrm{Y}}(t)=\mathrm{M}_{\mathrm{X}}(t)+\mathrm{M}_{\mathrm{Y}}(t)
$$

(iii) If two balls are drawn from an urn containing 7 white, 5 black and 3 red balls
at random, then the probability that both the balls are red will be $\frac{1}{35}$.
(iv) For a positively skewed distribution : Mean < Median < Mode
(v) The Neyman-Pearson lemma applies to the problem of testing simple hypothesis against a composite alternative hypothesis.

MTE-11

स्नातक उपाधि कार्यक्रम (बी.डी.पी.)

सत्रांत परीक्षा

दिसम्बर. 2021
एम.टी.ड.-11 : प्रायिकता और सांख्यिकी
समय : 2 घण्टे
अधिकतम अंक : 50
नोट : (i) प्र. सं. 7 अनिवार्य है।
(ii) प्रश्न संख्या 1 से 6 तक कोई चार प्रश्न
कीजिए।
(iii) संकेतनों के अर्थ सामान्य हैं।
(iv) कैलकलेटरों का प्रयोग करने की अनमति नहीं है।

1. (क) 45 विद्यार्थियों के सांख्यिकी में प्राप्त अंक अग्रलिखित हैं :

9253656361475860645557824239
5165553350525345452536596365 3045354915544864752042404155 524635
(i) 8 वर्गों के साथ बारम्बारता सारणी बनाइए।
(ii) 'से अधिक' और 'से कम' प्रकार के तोरण बनाइए।
(iii) निम्नलिखित अंक प्राप्त करने वाले विद्यार्थियों की संख्या परिकलित कीजिए :
(I) 80 से अधिक
(II) 60 से कम
(ख)मान लीजिए कि p वह प्रायिकता है कि परिकल्पना $\mathrm{H}_{1}: p=\frac{3}{4}$ के विरुद्ध $\mathrm{H}_{0}: p=\frac{1}{2}$ के परीक्षण के लिए एक सिक्का एक उछाल में चित दर्शाता है। सिक्के को 5 बार उछाला जाता है और H_{0} अस्वीकार की जाती है यदि 3 से अधिक

चित आते हैं। प्रकार I त्रटि की प्रायिकता और परीक्षण की क्षमता ज्ञात कीजिए।
2. (क) एक कक्षा के तीन भाग A, B एवं C हैं जिनमें क्रमशः 48,40 और 52 विद्यार्थी हैं। यदि प्रत्येक भाग में, प्रत्येक विद्यार्थी के बौद्धिक स्तर (IQ) का माध्य क्रमशः 130,125 और 100 है तथा IQ का मानक विचलन क्रमशः 3,4 और 5 है, तो निम्नलिखित को ज्ञात कीजिए :
(i) कक्षा के लिए IQ का संयोजित माध्य
(ii) प्रत्येक भाग के लिए विचरण गणांक, यह भी दर्शाइए कि कौन-से भाग की विचरणता अधिकतम है ?
(ख)एक कम्पनी में दो विक्रेता राहल (R) और प्रीति (P) हैं। वह प्रायिकता कि किसी दिये गये दिन राहल अनपस्थित है, 0.05 है, और प्रीति किसी

दिन अनपस्थित है, 0.10 है। वह प्रायिकता ज्ञात कीजिए कि किसी दिये गये दिन :
(i) राहल और प्रीति दोनों उपस्थित होंगे।
(ii) उनमें से कम से कम एक अनपस्थित होगा।
(iii) उनमें से केवल एक अनपस्थित होगा।
(ग) मान लीजिए $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots \ldots, \mathrm{X}_{n}$ आकार n वाला एक यादच्छिक प्रतिदर्श है जो निम्नलिखित p.d.f. से लिया गया है :

$$
f(\mathrm{X} ; \theta)=\left\{\begin{array}{cl}
\theta x^{\theta-1}, & 0<x<1, \theta>0 \\
0, & \text { अन्यथा }
\end{array}\right.
$$

θ का अधिकतम संभावित आकलक ज्ञात कीजिए।
3. (क)वह प्रायिकता कि एक विद्यार्थी कॉलेज में प्रवेश लेने के बाद ग्रेजएट होगा, 0.4 है। वह प्रायिकता ज्ञात कीजिए कि 5 विद्यार्थियों में से कम से कम एक ग्रेजएट होगा।
(ख)मान लीजिए कि एक यादच्छिक चर X
निम्नलिखित p.d.f. वाले चरघांताकीय बंटन में है : 4

$$
f(x)=\left\{\begin{array}{cc}
k e^{-(x / 3)} ; & x>0 \\
0 ; & x \leq 0
\end{array}\right.
$$

(i) k ज्ञात कीजिए।
(ii) X का माध्य और प्रसरण ज्ञात कीजिए।
(ग) एक सहसम्बन्ध विश्लेषण में दो समाश्रयण रेखाओं की समीकरण निम्नलिखित प्राप्त की गयी :

$$
3 \mathrm{X}+12 \mathrm{Y}=19,3 \mathrm{Y}+9 \mathrm{X}=46
$$

ज्ञात कीजिए :
(i) X और Y के बीच सहसम्बन्ध गणांक
(ii) X और Y के माध्य मान
(iii) यदि Y का प्रसरण 4 है, तो X का प्रसरण ज्ञात कीजिए।
4. (क)मान लीजिए कि (X,Y) का संयक्त घनत्व फलन निम्नलिखित है :

$$
f_{\mathrm{X}, \mathrm{Y}}(x, y)=\left\{\begin{array}{cl}
c x y(1-y) ; & 0<x, y<1 \\
0 ; & \text { अन्यथा }
\end{array}\right.
$$

c का मान ज्ञात कीजिए और दर्शाइए कि X और Y स्वतंत्र हैं। $\mathrm{P}\left[\mathrm{X}<\frac{1}{2} \cap \mathrm{Y}>\frac{1}{2}\right]$ भी ज्ञात कीजिए।
(ख)मान लीजिए X , माध्य 0 और प्रसरण 1 वाला एक यादच्छिक चर है, तो $\mathrm{P}[|\mathrm{X}-\mu|>\sigma]$ का उपरि परिबद्ध ज्ञात कीजिए। 2
(ग) प्रायिकता फलन $f(x)=\frac{1}{2^{x}}, x=1,2,3 \ldots \ldots .$. वाले एक बंटन के लिए शेबीशेव असमिका का प्रयोग करके दर्शाइए कि $\mathrm{P}(|\mathrm{X}-2| \leq 2)>\frac{1}{2}$ है। इस प्रकार वास्तविक प्रायिकता भी ज्ञात कीजिए। 3
5. (क)एक यादच्छिक संख्या जनक $\mathrm{U}(0,1)$ से 40 यादच्छिक संख्याएँ निकालता है जो निम्नलिखित सारणी में दी गयी हैं :

4

यादच्छिक सं.	बारम्बारता
$0.0-0.2$	8
$0.2-0.4$	9
$0.4-0.6$	6
$0.6-0.8$	9
$0.8-1.0$	8

काई-वर्ग परीक्षण का प्रयोग करते हए 5% सार्थकता स्तर पर परीक्षण कीजिए कि यादच्छिक संख्याएँ एकसमान बंटन $\mathrm{U}(0,1)$ से आयी हैं। [आप निम्नलिखित मानों का प्रयोग कर सकते हैं : $\chi_{(4)}^{2}=9.48, \chi_{(5)}^{2}=11.07$ एवं $\left.\chi_{(6)}^{2}=13.82\right]$
(ख)एक बंटन के लिए, माध्य $=10$, प्रसरण $=16$, $b_{1}=1$ और $b_{2}=4$ हैं। मलबिन्द के सापेक्ष पहले चार आघर्ण ज्ञात कीजिए। बंटन की वैषम्यता और ककदता पर टिप्पणी कीजिए।
(ग) मान लीजिए X_{1} और X_{2} आकार 2 का एक यादच्छिक प्रतिदर्श है और $\mathrm{S}^{2}=\frac{1}{n} \Sigma\left(\mathrm{X}_{i}-\overline{\mathrm{X}}\right)^{2}$ है। यदि $\mathrm{S}^{2}=\mathrm{C}\left(\mathrm{X}_{1}-\mathrm{X}_{2}\right)^{2}$ है, तो C का मान ज्ञात कीजिए।
6. (क)दो यादच्छिक चरों X और Y का संयक्त प्रायिकता द्रव्यमान फलन (p.m.f.), $f(x, y)$ निम्नलिखित है :

4

Y	0	1	2	3
0	$1 / 27$	$3 / 27$	$3 / 27$	$1 / 27$
1	$3 / 27$	$6 / 27$	$3 / 27$	0
2	$3 / 27$	$3 / 27$	0	0
3	$1 / 27$	0	0	0

निम्नलिखित को प्राप्त कीजिए :
(i) $\mathrm{P}[\mathrm{X}=2]$
(ii) $\mathrm{P}[\mathrm{Y}=1]$
(iii) $\mathrm{P}(\mathrm{X}=2 / \mathrm{Y}=1)$
(iv) क्या चर X और Y स्वतंत्र हैं ? स्पष्ट कीजिए।
(v) $\mathrm{P}[\mathrm{X}+\mathrm{Y}=2]$ परिकलित कीजिए।
(ख)प्राचल λ वाले प्वॉयसां बंटन का आघर्ण जनक फलन ज्ञात कीजिए। 2
(ग) एक विशेष प्रकार की बैटरी के जीवनकाल का माध्य 400 घण्टे और मानक विचलन 50 घण्टे है। मान लीजिए कि जीवनकाल का बंटन प्रसामान्य है, तो ज्ञात कीजिए :
(i) कम से कम 470 घण्टे जीवनकाल वाली बैटरियों की प्रतिशतता।
(ii) जीवनकाल 385 और 415 घण्टों के बीच वाली बैटरियों का समानपात
[आप निम्नलिखित मानों का प्रयोग कर सकते हैं : $\phi(1.4)=0.9192, \phi(0.3)=0.6179$]
7. निम्नलिखित कथनों में से कौन-से कथन सत्य और कौन-से कथन असत्य हैं ? अपने उत्तर में एक संक्षिप्त उपपत्ति या प्रति-उदाहरण दीजिए : $5 \times 2=10$
(i) यदि एक यादच्छिक चर X का प्रसरण 5 है, तो $\mathrm{Y}=2 \mathrm{X}+3$ का प्रसरण 13 होगा।
(ii) यदि X और Y स्वतंत्र यादच्छिक चर हैं तो m.g.f. $\mathrm{M}_{\mathrm{X}+\mathrm{Y}}(t)=\mathrm{M}_{\mathrm{X}}(t)+\mathrm{M}_{\mathrm{Y}}(t)$ होगा।
(iii) यदि 7 सफेद, 5 काली और 3 लाल गेंदों से भरे एक थैले से दो गेंदें यादच्छया निकाली जाती हैं, तो दोनों गेंदों के लाल होने की प्रायिकता $\frac{1}{35}$ होगी।
(iv) एक धनात्मक वैषम्य बंटन के लिए, माध्य < माध्यिका < बहलक होगा।
(v) संयक्त वैकल्पिक परिकल्पना के विरुद्ध सरल परिकल्पना परीक्षण की समस्या के लिए नेमाँपीयर्सन प्रमेयिका का प्रयोग होता है।

MTE-11

