[2]

- (ii) Draw 'more than' and 'less than' ogive.
- (iii) Estimate the number of students who got the marks :
 - (I) more than 80
 - (II) less than 60
- (b) Let p be the probability that a coin will show head in a single toss in order to test

 $H_0: p = \frac{1}{2}$ against $H_1: p = \frac{3}{4}$. The coin is

tossed 5 times and H_0 is rejected if more than 3 heads are obtained. Find the probability of type I error and power of the test. 5

2. (a) There are 3 sections A, B and C of a class having 48, 40 and 52 students, respectively. If the mean intelligent quotients (IQs) per student for the sections

No. of Printed Pages : 20

BACHELOR'S DEGREE PROGRAMME

(BDP)

Term-End Examination

December, 2021

MTE-11 : PROBABILITY AND STATISTICS

Time : 2 Hours Maximum Marks : 50

Note: (i) Question No. 7 is compulsory.

- (ii) Attempt any four questions from Question Nos. 1 to 6.
- (iii) Symbols have their usual meanings.
- (iv) Use of calculator is not allowed.
- 1. (a) The marks obtained by 45 students in statistics are as given below : 5
 92 53 65 63 61 47 58 60 64 55 57 82 42 39
 51 65 55 33 50 52 53 45 45 25 36 59 63 65
 30 45 35 49 15 54 48 64 75 20 42 40 41 55
 52 46 35

MTE-11

[3] MTE-11

are 130, 125 and 100, and the standard deviations of IQ are 3, 4 and 5 respectively: 3

- (i) Find the composite mean of IQ for the class.
- (ii) Obtain the coefficient of variations for each of the sections, and show which section has the greatest variability.
- (b) There are two salespersons Rahul (R) and Preeti (P) in a company. The probability that Rahul will be absent on any given day is 0.05 and that Preeti will be absent on any given day is 0.10. Find the probability that on a given day : 3
 - (i) Both Rahul and Preeti would be present,
 - (ii) At least one of them would be absent.
 - (iii) Only one of them will be absent.

(c) Let X_1, X_2, \dots, X_n be a random sample of

size *n* from a distribution with p.d.f. :

[4]

 $f(\mathbf{X}; \boldsymbol{\theta}) = \begin{cases} \theta x^{\theta - 1}, & 0 < x < 1, \theta > 0\\ 0, & \text{elsewhere} \end{cases}$

Obtain a maximum likelihood estimator of θ . 4

- 3. (a) The probability that a student entering in a college will graduate is 0.4. Find the probability that out of 5 students at least one will graduate.
 2
 - (b) Let a random variable X follows exponential distribution with p.d.f. : 4

$$f(x) = \begin{cases} k e^{-(x/3)}; & x > 0\\ 0; & x \le 0 \end{cases}$$

- (i) Find k.
- (ii) Compute the mean and variance of X.

[5] MTE-11

(c) The equations of two regression lines obtained in a correlation analysis are as follows: 4

3X + 12Y = 19, 3Y + 9X = 46

Find :

- (i) The correlation coefficient between X and Y
- (ii) Mean value of X and Y
- (iii) Variance of X, if variance of Y is 4
- 4. (a) Let (X, Y) has the joint probability density function : 5

 $f_{X,Y}(x, y) = \begin{cases} c \ xy(1-y); & 0 < x, y < 1 \\ 0 & ; & \text{otherwise} \end{cases}$

Find *c*, and show that X and Y are independent. Also, find $P\left[X < \frac{1}{2} \cap Y > \frac{1}{2}\right]$.

(b) If X is a random variable with mean 0 and variance 1, then find an upper bound for P[|X-μ|>σ].

(c) For a given distribution with probability function $f(x) = \frac{1}{2^x}$, $x = 1, 2, 3, \dots$, show that $P(|X-2| \le 2) > \frac{1}{2}$ using Chebyshev's inequality. Hence, find the actual probability. 3

[6]

5. (a) A random number generator produces 40 U(0, 1) random numbers, which are arranged in the following table : 4

Random No.	Frequency
0.0-0.2	8
0.2-0.4	9
0.4—0.6	6
0.6—0.8	9
0.8—1.0	8

Apply Chi-square test that random numbers come from uniform distribution U(0, 1) at 5% level of significance. [You may like to use the values $\chi^2_{(4)} = 9.48$, $\chi^2_{(5)} = 11.07$, and $\chi^2_{(6)} = 13.82$].

		[7]		MTE-11			[8] MTE-11
(b)	For a dist	ibution, the r	nean is 10,	variance		Obta	ain the following :
	is 16, $b_1 =$	1 and $b_2 = 4$.	Obtain the	first four		(i)	P[X=2]
	moments	about the or	rigin. Com	iment on		(ii)	P[Y=1]
	the skew	vness and	kurtosis	of the		(iii)	P(X = 2/Y = 1)
	distributio	n.		4		(iv)	Are the variables X and Y independent ?
(c)	Let X_1 an	d X_2 be a ran	ndom samp	ole of size			Justify.
	2 and $S^2 =$	$\frac{1}{n}\Sigma(\mathbf{X}_i-\overline{\mathbf{X}})^2.$	If $S^2 = C(x)$	$(X_1 - X_2)^2$,		(v)	Calculate $P[X + Y = 2]$.
	then find t	he value of C		2	(b)	Find	l the moment generating function of
(a)	The joint	p.m.f. $f(x,$	y) of two	random		Pois	son distribution with parameter λ . 2
	variables	X and Y is gi	ven in the	following	(c)	The	lifetime of certain kind of battery has
	table :			4		a m	ean life of 400 hours and standard
X	Y 0	1	2	3			ation as 50 hours. Assuming the
(0 1/2	7 3/27	3/27	1/27		dist	ribution of lifetime to be normal, find :
	1 3/2	7 6/27	3/27	0			4
2	2 3/2	7 3/27	0	0		(i)	The percentage of batteries with a

The percentage of batteries with a (1) lifetime of at least 470 hours.

0

6.

3

1/27

0

0

[9] (ii) The proportion of batteries with a lifetime between 385 and 415 hours. [You may the values : use $\phi(1.4) = 0.9192$, $\phi(0.3) = 0.6179$].

- 7. Which of the following statements are true or false ? Give a short proof or a counter-example in support of your $5 \times 2 = 10$ answer:
 - If variance of a random variable X is 5, (i) then variance of Y = 2X + 3 is 13.
 - (ii) If X and Y are independent random variables, then the m.g.f. :
 - $M_{X+Y}(t) = M_X(t) + M_Y(t)$.
 - (iii) If two balls are drawn from an urn containing 7 white, 5 black and 3 red balls

[10] MTE-11 at random, then the probability that both the balls are red will be $\frac{1}{35}$.

- (iv) For a positively skewed distribution : Mean < Median < Mode.
- (v) The Neyman-Pearson lemma applies to the problem of testing simple hypothesis against a composite alternative hypothesis.

[11] MTE-11	[12] MTE-11
MTE-11	$92\ 53\ 65\ 63\ 61\ 47\ 58\ 60\ 64\ 55\ 57\ 82\ 42\ 39$
	$51 \ 65 \ 55 \ 33 \ 50 \ 52 \ 53 \ 45 \ 45 \ 25 \ 36 \ 59 \ 63 \ 65$
स्नातक उपाधि कार्यक्रम (बी.डी.पी.)	30 45 35 49 15 54 48 64 75 20 42 40 41 55
सत्रांत परीक्षा	$52\ 46\ 35$
संत्रात पराका	(i) 8 वर्गों के साथ बारम्बारता सारणी बनाइए।
दिसम्बर. 2021	(ii)'से अधिक' और 'से कम' प्रकार के तोरण
एम.टी.ई11 : प्रायिकता और सांख्यिकी	बनाइए।
समय : 2 घण्टे अधिकतम अंक : 50	(iii) निम्नलिखित अंक प्राप्त करने वाले विद्यार्थियों
नोट : (i) प्र. सं. 7 अनिवार्य है।	की संख्या परिकलित कीजिए :
<i>(ii)</i> प्रश्न संख्या 1 से 6 तक कोई <i>चार</i> प्रश्न	(I) 80 से अधिक
कोजिए।	(II) 60 से कम
(iii) संकेतनों के अर्थ सामान्य हैं।	(ख)मान लीजिए कि p वह प्रायिकता है कि
(iv) कैलकलेटरों का प्रयोग करने की अनमति नहीं	परिकल्पना $H_1: p = \frac{3}{4}$ के विरुद्ध $H_0: p = \frac{1}{2}$ के
है।	परीक्षण के लिए एक सिक्का एक उछाल में चित
1. (क)45 विद्यार्थियों के सांख्यिकी में प्राप्त अंक	दर्शाता है। सिक्के को 5 बार उछाला जाता है और
अग्रलिखित हैं : 5	H ₀ अस्वीकार की जाती है यदि 3 से अधिक
P. T. O.	

	[13] MTE-1	[14] MTE-11
	चित आते हैं। प्रकार I त्रटि की प्रायिकता औ	दिन अनपस्थित है, 0.10 है। वह प्रायिकता ज्ञात
	परीक्षण को क्षमता ज्ञात कीजिए।	कोजिए कि किसी दिये गये दिन : 3
2. (व	я)एक कक्षा के तीन भाग А, В एवं С हैं जिनग	(i) राहल और प्रीति दोनों उपस्थित होंगे।
	क्रमश: 48, 40 और 52 विद्यार्थी हैं। यदि प्रत्येव	(ii) उनमें से कम से कम एक अनपस्थित होगा।
	भाग में, प्रत्येक विद्यार्थी के बौद्धिक स्तर (IQ) क	(iii)उनमें से केवल एक अनपस्थित होगा।
	माध्य क्रमश: 130, 125 और 100 है तथा IC	(\mathbf{v}) मान लीजिए $\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n$ आकार n वाला
	का मानक विचलन क्रमश: 3, 4 और 5 है, त	एक यादच्छिक प्रतिदर्श है जो निम्नलिखित p.d.f.
	निम्नलिखित को ज्ञात कीजिए :	से लिया गया है : 4
	(i) कक्षा के लिए IQ का संयोजित माध्य	$f(\mathbf{X}; \boldsymbol{\theta}) = \begin{cases} \theta x^{\theta - 1}, & 0 < x < 1, \theta > 0\\ 0, & \text{अन्यथा} \end{cases}$
	(ii) प्रत्येक भाग के लिए विचरण गणांक, यह भ	θ का अधिकतम संभावित आकलक ज्ञात कीजिए।
	दर्शाइए कि कौन-से भाग की विचरणत	
	अधिकतम है ?	3. (क)वह प्रायिकता कि एक विद्यार्थी कॉलेज में प्रवेश
(۲	व)एक कम्पनी में दो विक्रेता राहल (R) और प्रीलि	लेने के बाद ग्रेजएट होगा, 0.4 है। वह प्रायिकता
	(P) हैं। वह प्रायिकता कि किसी दिये गये दि	ज्ञात कीजिए कि 5 विद्यार्थियों में से कम से कम
	राहल अनपस्थित है, 0.05 है, और प्रीति किस	एक ग्रेजएट होगा। 2

[15]	MTE-11
(ख)मान लीजिए कि एक यादच्छिक	चर X 4.
निम्नलिखित p.d.f. वाले चरघांताकीय	बंटन में
हे :	4
$f(x) = \begin{cases} k \ e^{-(x/3)}; & x > 0\\ 0 & ; & x \le 0 \end{cases}$	
(i) k ज्ञात कोजिए।	
(ii) X का माध्य और प्रसरण ज्ञात कीजि	ए।
(ग) एक सहसम्बन्ध विश्लेषण में दो	समाश्रयण
रेखाओं की समीकरण निम्नलिखित प्राप्त व	की गयी :
3X + 12Y = 19, 3Y + 9X = 46	
ज्ञात कोजिए :	4
(i) X और Y के बीच सहसम्बन्ध गणा	ांक
(ii) X और Y के माध्य मान	
(iii) यदि Y का प्रसरण 4 है, तो X व	का प्रसरण
ज्ञात कोजिए।	

[16] MTE-11
(क)मान लीजिए कि (X,Y) का संयक्त घनत्व फलन
निम्नलिखित है : 5
$f_{X,Y}(x, y) = \begin{cases} c \ xy(1-y); & 0 < x, y < 1 \\ 0 & ; & \text{अन्यथा} \end{cases}$
c का मान ज्ञात कोजिए और दर्शाइए कि X और
Y स्वतंत्र हैं। $P\left[X < \frac{1}{2} \cap Y > \frac{1}{2}\right]$ भी ज्ञात
कीजिए।
(ख)मान लीजिए X, माध्य 0 और प्रसरण 1 वाला
एक यादच्छिक चर है, तो P[X−μ >σ] का
उपरि परिबद्ध ज्ञात कीजिए। 2
(ग) प्रायिकता फलन $f(x) = \frac{1}{2^x}$, $x = 1, 2, 3$ वाले
एक बंटन के लिए शेबीशेव असमिका का प्रयोग
करके दर्शाइए कि P(X−2 ≤2) > $rac{1}{2}$ है। इस
प्रकार वास्तविक प्रायिकता भी ज्ञात कोजिए। 3

[18]	MTE-11
(ग) मान लीजिए X_1 और X_2 आकार 2	2 का एक
यादच्छिक प्रतिदर्श है और $S^2 = \frac{1}{n} \Sigma(X_n)$	_i − X)² है।
यदि $S^2 = C(X_1 - X_2)^2$ है, तो C क	ा मान ज्ञात
कीजिए।	2
(क)दो यादच्छिक चरों X और Y व	का संयक्त
प्रायिकता द्रव्यमान फलन (p.m.f	f(x, y)
निम्नलिखित है :	4

X X	0	1	2	3
0	1/27	3/27	3/27	1/27
1	3/27	6/27	3/27	0
2	3/27	3/27	0	0
3	1/27	0	0	0

निम्नलिखित को प्राप्त कीजिए :

(i) P[X=2]

6.

(ii) P[Y=1]

(iii) P(X = 2/Y = 1)

[17] MTE-11 5. (क)एक यादच्छिक संख्या जनक U(0,1) से 40 यादच्छिक संख्याएँ निकालता है जो निम्नलिखित सारणी में दी गयी हैं : 4

यादच्छिक सं	बारम्बारता
0.0-0.2	8
0.2-0.4	9
0.4—0.6	6
0.6-0.8	9
0.8—1.0	8

काई-वर्ग परीक्षण का प्रयोग करते हए 5% सार्थकता स्तर पर परीक्षण कीजिए कि यादच्छिक संख्याएँ एकसमान बंटन U(0,1) से आयी हैं। [आप निम्नलिखित मानों का प्रयोग कर सकते हैं : $\chi^2_{(4)} = 9.48$, $\chi^2_{(5)} = 11.07$ एवं $\chi^2_{(6)} = 13.82$] (ख)एक बंटन के लिए, माध्य =10, प्रसरण =16, $b_1 = 1$ और $b_2 = 4$ हैं। मलबिन्द के सापेक्ष पहले चार आघर्ण ज्ञात कीजिए। बंटन की वैषम्यता और ककदता पर टिप्पणी कीजिए। 4

[19]	MTE-11		[20] MTE-11
(iv) क्या चर X और Y स्वतंत्र हैं	? स्पष्ट	7. f	नम्नलिखित कथनों में से कौन-से कथन सत्य और
कोजिए।		6	हौन-से कथन असत्य हैं ? अपने उत्तर में एक संक्षिप्त
(v) P[X + Y = 2] परिकलित कीजिए।		3	उपपत्ति या प्रति-उदाहरण दीजिए : 5×2=10
(ख)प्राचल λ वाले प्वॉयसां बंटन का आघण	र्ग जनक	(i) यदि एक यादच्छिक चर X का प्रसरण 5 है, तो
फलन ज्ञात कीजिए।	2		Y = 2 X + 3 का प्रसरण 13 होगा।
(ग) एक विशेष प्रकार की बैटरी के जीवनक	नल का	(ii) यदि X और Y स्वतंत्र यादच्छिक चर हैं तो
माध्य 400 घण्टे और मानक विचलन 50	घण्टे है।		m.g.f. $M_{X+Y}(t) = M_X(t) + M_Y(t)$ होगा।
मान लीजिए कि जीवनकाल का बंटन प्रसा	मान्य है,	(iii) यदि 7 सफेद, 5 काली और 3 लाल गेंदों से भरे
तो ज्ञात कीजिए :	4		एक थैले से दो गेंदें यादच्छया निकाली जाती हैं,
(i) कम से कम 470 घण्टे जीवनकाल	त वाली		तो दोनों गेंदों के लाल होने की प्रायिकता
बैटरियों की प्रतिशतता।			$\frac{1}{35}$ होगी।
(ii) जीवनकाल 385 और 415 घण्टों व	के बीच	(iv) एक धनात्मक वैषम्य बंटन के लिए,
वाली बैटरियों का समानपात			माध्य < माध्यिका < बहलक होगा।
आप निम्नलिखित मानों का प्रयोग क	र सकते	(v) संयक्त वैकल्पिक परिकल्पना के विरुद्ध सरल
हें : $\phi(1.4) = 0.9192$, $\phi(0.3) = 0.6179$			परिकल्पना परीक्षण की समस्या के लिए नेमौं–
			पीयर्सन प्रमेयिका का प्रयोग होता है।

MTE–11