- 1. (a) Derive the term symbol for the excited state of Helium atom with electronic configuration $1s^12p^1$. How many lines do you expect in the atomic spectrum of He for transition from ground state to this excited state ? Give reasons. 4
 - (b) Write the symmetry elements present in NH₃ molecule. Draw suitable diagrams. 3
 - (c) Discuss the effect of conjugation on the electronic transitions in a carbonyl group with suitable energy level diagram.
- 2. (a) The spacing between the lines in rotational spectrum of ${}^{1}H{}^{35}Cl$ is found to be 21.18 cm⁻¹. Calculate the bond length of HCl. Consider the atomic masses of H and Cl to be 1 and 35, respectively. 4
 - (b) Which of the following molecule(s) will have a net dipole moment ? Give reasons for your answer : 2
 - (i) SF₆
 - (ii) NH₃

No. of Printed Pages : 15

BACHELOR OF SCIENCE (B. SC.)

Term-End Examination

December, 2021

CHE-10 : SPECTROSCOPY

Time : 2 Hours

Maximum Marks : 50

CHE-10

Note: (i) Attempt any five questions.

(ii) All questions carry equal marks.

(iii)Use of Log tables and Nonprogrammable calculators is allowed.

(*iv*) Electronic charge, $e = 1.6 \times 10^{-19}$ C,

Mass of electron =
$$9.1 \times 10^{-31}$$
kg,

$$h = 6.626 \times 10^{-34} \text{Js},$$

$$\epsilon_0 = 8.854 \times 10^{-12} C^2 N^{-1} m^{-2}$$
 ,

 $c = 3 \times 10^8 \,\mathrm{ms}^{-1}$.

- [3] CHE-10
- (c) Which of the following molecules are microwave active ? Why ?2

CHCl₃, CH₄, CO₂ and H₂O.

- (d) Aldehydes, in general, have higher carbonyl frequency in IR spectra than corresponding ketones. Give reason. 2
- 3. (a) SiF₂ vapour belongs to C_{2V} group. The frequencies for its symmetric stretching, symmetric bending and antisymmetric stretching modes are 855 cm⁻¹, 345 cm⁻¹ and 872 cm⁻¹ respectively. Calculate its total zero point energy. 3
 - (b) Show that the ratio of vibrational frequencies of fundamental absorption is given by $\frac{v_{\text{HCl}}}{v_{\text{DCl}}} = \sqrt{2}$. Given that atomic masses of H, D and Cl are 1, 2 and 35.5, respectively. 3

CHE-10

(c) Draw a block diagram of an IR spectrometer and describe in brief the role of each component.

[4]

- 4. (a) Calculate the position of Raman vibrational lines for C-H stretching of an alkane at 2900 cm⁻¹, if Hg radiation of 435.8 nm is used.
 - (b) C₂H₂ exhibits two IR bands and three Raman bands, none of them occur at the same wave-number. One of the IR bands shows a simple PR structure. Comment on the structure of C₂H₂ giving reason. 3
 - (c) With the help of suitable diagrams, explain the following : 5
 - (i) Predissociation
 - (ii) Phosphorescence

	[5] CHE-10		[6] CHE-10
(a)	The dissociation energy for chlorine	(c)	Give reasons : 3
	molecule in the ground state is 239.42 kJ		(i) Mercury (II) iodide is brick red in
	mol^{-1} . If the excitation energy for chlorine		colour.
	is 881 cm ⁻¹ , compute the continuum		(ii) The aqueous solution of NiSO ₄ which
	vibrational wave-number for chlorine		
	molecule. 4		is pale green turns deep blue on
(b)	What do you understand by the term 'band		addition of ethylene diamine.
(~)	pass width'? 2	7. (a)	Derive the following formula : $2\frac{1}{2}$
(c)	Why are e.s.r. spectra presented as		$hv = g_{\rm N} \ \beta_{\rm N} \ { m B}_{\rm Z}$ starting from
	derivative spectra ? 2		$v = \frac{\gamma B_Z}{2\pi}$
(d)	Which of the following will have higher		2π
	λ_{max} and why ? 2	(b)	Draw and explain the e.s.r. spectrum of H
	1, 3-butadiene and 1, 5-hexadiene.		atom. $2\frac{1}{2}$
(a)	Calculate the value of nuclear magneton	(c)	Using the following data for a compound,
	for proton. Given : 3		arrive at its structure : 5
	Mass of proton = 1.672×10^{-27} kg.		Molecular weight : 108 (not an acidic
(b)	Explain the origin of peaks at m/z 114, 85,		compound)

UV spectrum : $\lambda_{max}\,$ at 254 nm and 202 nm

71 and 57 in mass spectrum of *n*-octane. 4

5.

(a)

6.

(a)

[7] CHE-10

IR spectrum : 3420 (broad), 3064, 1500 and 1455 $\rm cm^{-1}$

NMR spectrum : (δ, CDCl_3) : 3, 85 (s, 1H),

4.55 (s, 2H) and 7.25 (s, 5H)

Mass spectrum : m/z 108 (molecular ion) 79 (base peak).

Prominent M-1 peak. Large peaks at m/z 77 and 51.

Also correlate the spectral data with structural units present in the compound.5

CHE-10 विज्ञान स्नातक (बी. एस-सी.) सत्रांत परीक्षा दिसम्बर. 2021 सी. एच. ई.-10 : स्पेक्ट्रमिकी अधिकतम अंक : 50 समय : 2 घण्टे नोट : (i) किन्हीं पाँच प्रश्नों के उत्तर दीजिए। (ii) सभी प्रश्नों के अंक समान हैं। (iii) लॉग सारणियों तथा अप्रोग्रामीय कैल्कलेटरों के उपयोग की अनमति है। (iv) इलेक्ट्रॉन आवेश, $e = 1.6 \times 10^{-19} \text{C},$ इलेक्ट्रॉन का द्रव्यमान $= 9.1 \times 10^{-31} \text{kg}$, $h = 6.626 \times 10^{-34}$ Js, $\in_0 = 8.854 \times 10^{-12} C^2 N^{-1} m^{-2}$ $c = 3 \times 10^8 \,\mathrm{ms^{-1}}$ |

[8]

CHE-10

[9]	CHE-10	[10] CHE-10		
न्यास $1s^12s^1$	वाली हीलियम की	(ख)निम्नलिखित अणओं में से किस/किनका नेट द्रिध्रव)निम्नलिखिल	
ग के लिए	पद-प्रतीक व्यत्पन्न	आघर्ण होगा ? अपने उत्तर का कारण दीजिए :	आघर्ण होग	
१म के परमाप	ग स्पेक्ट्रम में, मल	2		
उत्तेजित अव	ास्था में संक्रमण के	(i) SF_6	(i) SF ₆	
वाएँ अपेक्षित हैं	? कारण बताइए। 4	(ii) NH₃ (ग) निम्नलिखित अणओं में से कौन-से सक्ष्म तरंग		
में उपस्थित	सममिति तत्वों को	सक्रिय होंगे ? क्यों ? 2	सक्रिय होंग	
चित्र बनाइए।	3	$\mathrm{CHCl}_3, \mathrm{CH}_4, \mathrm{CO}_2$ और $\mathrm{H}_2\mathrm{O}$	CHC	
र चित्र की स	पहायता से कार्बोनिल	(घ) अवरक्त स्पेक्ट्रम में, ऐल्डिहाइडों की सामान्यत:	अवरक्त र	
स्ट्रॉनिक संक्रम	णों पर संयग्मन के	संगत कोटोनों की तलना में उच्चतर कार्बोनिल	संगत कीट	
कोजिए।	3	आवत्ति होती है। इसका कारण बताइए। 2	आवत्ति होत	
घर्णन स्पेक्ट्रम	में रेखाओं के बीच	3. (क) ${ m SiF}_2$ वाष्प का ${ m C}_{2{ m V}}$ समह होता है। इसके	$){ m SiF}_2$ वाप	
8 cm ⁻¹ है।	HCl की आबंध	सममित तनन, सममित बंकन और प्रतिसममित तनन की आवत्तियाँ क्रमश: 855 cm ⁻¹ , 345 cm ⁻¹		
ात कीजिए। H	I और Cl के लिए	और 872 cm ⁻¹ हैं। इसकी सम्पर्ण शन्य बिंद ऊर्जा		
, क्रमश: 1 औ	रेर 35 लीजिए। 4	परिकलित कीजिए। 3	परिकलित	

1. (क)इलेक्ट्रॉनिक विन्यास उत्तेजित अवस्था कोजिए। हीलियम अवस्था से इस उन लिए कितनी रेखाएँ $(ख) \operatorname{NH}_3$ अण में बताइए। उचित चित्र (ग) उचित ऊर्जा-स्तर नि समह के इलेक्ट्रॉनि प्रभाव को चर्चा को 2. (क)¹H³⁵Cl के घर्णन की दरी 21.18 लम्बाई परिकलित परमाण द्रव्यमान, क्र

[12] CHE-10	[11] CHE-10
(ख) $\mathrm{C_2H_2}$ दो अवरक्त बैंड और तीन रमन बैंड	(ख)दर्शाइए कि मल अवशोषण की कम्पनिक
प्रदर्शित करता है जिनमें से कोई भी समान	आवत्तियों का अनपात निम्नलिखित होता है :
तरंग-संख्या पर प्रदर्शित नहीं होता है। अवरक्त बैंडों	
में से एक सरल PR संरचना प्रदर्शित करता है।	$\frac{v_{\rm HCl}}{v_{\rm DCl}} = \sqrt{2}$
$\mathrm{C_2H_2}$ की संरचना के बारे में कारण सहित	दिया है कि H, D और Cl के परमाण द्रव्यमान
टिप्पणी कोजिए। 3	क्रमश: 1, 2 और 35.5 हैं। 3
(ग) उचित चित्रों की सहायता से निम्नलिखत की	<i>x</i> ((1, 1, 2) (1()))) (1)
व्याख्या कोजिए : 5	(ग) एक अवरक्त स्पेक्ट्रममापी का खण्ड आरेख बनाइए
(i) पर्व-वियोजन	और उसके प्रत्येक घटक का संक्षिप्त वर्णन
(ii) स्फरदीप्ति	कीजिए। 4
5. (क)क्लोरीन अण के लिए मल अवस्था में वियोजन	4. (क)यदि 435.8 nm का Hg विकिरण उपयोग किया
ऊर्जा 239.42 kJ mol-1 है। यदि क्लोरीन के लिए	गया हो, तो 2900 cm-1 पर किसी ऐल्केन के
उत्तेजन ऊर्जा 881 cm ⁻¹ हो, तब क्लोरीन अण के	,
लिए सांतत्यक कम्पनिक तरंग-संख्या की गणना	C-H तनन के लिए रमन कम्पनिक रेखाओं की
कीजिए। 4	स्थिति परिकलित कीजिए। 2

	[13]	CHE-10	[14] CHE-10
(ख)'बैंड पार	ण चौडाई' पद से आप क्या	समझते हैं ?	(ग) कारण दीजिए : 3
		2	(i) मर्करी (II) आयोडाइड का रंग लाल होता है।
(ग) ई. एस.	आर. स्पेक्ट्रमों को व्यत्पन	न स्पेक्ट्रमों के	
रूप में व	भ्यों दर्शाया जाता है ?	2	(ii) NiSO4 का हल्का हरा जलीय विलयन
(घ) निम्नलिरि	खत में से किसका λ _{max}	अधिक होगा	एथिलीन डाइऐमीन मिलाने पर गहरा नीला हो
और क्यो	i?	2	जाता है।
1, 3-ब्य	ाटाडाईन एवं 1, 5-हैक्साडाई	र्धन।	7. (क)समीकरण $v=rac{\gamma B_Z}{2\pi}$ से आरम्भ करके
6. (क)प्रोटॉन	के लिए नाभिकीय मैग्ने	टॉन का मान	210
परिकलित	त कोजिए। दिया गया है :	3	निम्नलिखित व्यंजक व्यत्पन्न कीजिए :
प्रोटॉन क	ज द्रव्यमान $= 1.672 imes 10^{-2}$	⁷ kg I	$hv = g_{\rm N} \beta_{\rm N} B_{\rm Z}$
(ख) <i>n</i> −ऑक्टे	न के द्रव्यमान स्पेक्ट्रम में	<i>m / z</i> 114,	(ख)हाइड्रोजन परमाण के ई. एस. आर. स्पेक्ट्रम
85, 71	और 57 पर शिखरों व	नी उत्पत्ति की	को आरेखित कीजिए और उसकी व्याख्या कीजिए।
व्याख्या	कोजिए।	4	$2rac{1}{2}$

[15]	CHE-10
(ग) किसी यौगिक के निम्नलिखित आँकडों के	उपयोग
द्रारा, उसकी संरचना निर्धारित कोजिए :	5
अण भार : 108 (यह यौगिक अम्लीय नर्ह	ों है।)
पराबैंगनी स्पेक्ट्रम : $\lambda_{ m max}$ 254 nm और 20)2 nm
अवरक्त स्पेक्ट्रम : 3420 (विस्तत),	3064,
1500 और 1455 cm ⁻¹	
एन. एम. आर. स्पेक्ट्रम : (δ, CDCl ₃)	: 3.85
(s, 1H), 4.55 $(s, 2H)$ और 7.25 $(s, 5H)$	[)1
द्रव्यमान स्पेक्ट्रम $\left(\mathit{m} \ / \ \mathit{z} ight) \ : \ 108$ (अण अ	गयन),
79 (आधार शिखर), तीव्र (M-1) शिख	बर तथा
77 और 51 पर बडे शिखर	
इन स्पेक्ट्रमी आँकडों को अण में	उपस्थित
संरचनात्मक इकाइयों के साथ संबंधित कीरि	जए।

CHE-10