CHE-10

BACHELOR OF SCIENCE (B. SC.)

Term-End Examination
December, 2021
CHE-10 : SPECTROSCOPY

Time : 2 Hours
Maximum Marks : 50

Note: (i) Attempt any five questions.
(ii) All questions carry equal marks.
(iii)Use of Log tables and Nonprogrammable calculators is allowed.
(iv) Electronic charge, $\quad e=1.6 \times 10^{-19} \mathrm{C}$, Mass of electron $=9.1 \times 10^{-31} \mathrm{~kg}$,
$h=6.626 \times 10^{-34} \mathrm{Js}$, $\epsilon_{0}=8.854 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$, $c=3 \times 10^{8} \mathrm{~ms}^{-1}$.

1. (a) Derive the term symbol for the excited state of Helium atom with electronic configuration $1 s^{1} 2 p^{1}$. How many lines do you expect in the atomic spectrum of He for transition from ground state to this excited state? Give reasons.
(b) Write the symmetry elements present in NH_{3} molecule. Draw suitable diagrams. 3
(c) Discuss the effect of conjugation on the electronic transitions in a carbonyl group with suitable energy level diagram.

3
2. (a) The spacing between the lines in rotational spectrum of ${ }^{1} \mathrm{H}^{35} \mathrm{Cl}$ is found to be $21.18 \mathrm{~cm}^{-1}$. Calculate the bond length of HCl . Consider the atomic masses of H and Cl to be 1 and 35 , respectively.
(b) Which of the following molecule(s) will have a net dipole moment ? Give reasons for your answer :
(i) $\quad \mathrm{SF}_{6}$
(ii) NH_{3}
(c) Which of the following molecules are microwave active? Why?
$\mathrm{CHCl}_{3}, \mathrm{CH}_{4}, \mathrm{CO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$.
(d) Aldehydes, in general, have higher carbonyl frequency in IR spectra than corresponding ketones. Give reason. 2
3. (a) SiF_{2} vapour belongs to $\mathrm{C}_{2 \mathrm{~V}}$ group. The frequencies for its symmetric stretching, symmetric bending and antisymmetric stretching modes are $855 \mathrm{~cm}^{-1}, 345 \mathrm{~cm}^{-1}$ and $872 \mathrm{~cm}^{-1}$ respectively. Calculate its total zero point energy. 3
(b) Show that the ratio of vibrational frequencies of fundamental absorption is given by $\frac{v_{\mathrm{HCl}}}{v_{\mathrm{DCl}}}=\sqrt{2}$. Given that atomic masses of H, D and Cl are 1, 2 and 35.5 , respectively.
(c) Draw a block diagram of an IR spectrometer and describe in brief the role of each component.
4. (a) Calculate the position of Raman vibrational lines for C-H stretching of an alkane at $2900 \mathrm{~cm}^{-1}$, if Hg radiation of 435.8 nm is used.

2
(b) $\mathrm{C}_{2} \mathrm{H}_{2}$ exhibits two IR bands and three Raman bands, none of them occur at the same wave-number. One of the IR bands shows a simple PR structure. Comment on the structure of $\mathrm{C}_{2} \mathrm{H}_{2}$ giving reason.
(c) With the help of suitable diagrams, explain the following :
(i) Predissociation
(ii) Phosphorescence
5. (a) The dissociation energy for chlorine molecule in the ground state is 239.42 kJ mol^{-1}. If the excitation energy for chlorine is $881 \mathrm{~cm}^{-1}$, compute the continuum vibrational wave-number for chlorine molecule.
(b) What do you understand by the term 'band pass width'?
(c) Why are e.s.r. spectra presented as derivative spectra? 2
(d) Which of the following will have higher $\lambda_{\text {max }}$ and why?

1, 3-butadiene and 1, 5-hexadiene.
6. (a) Calculate the value of nuclear magneton for proton. Given :

$$
\text { Mass of proton }=1.672 \times 10^{-27} \mathrm{~kg}
$$

(b) Explain the origin of peaks at $m / z 114,85$, 71 and 57 in mass spectrum of n-octane. 4
(c) Give reasons : 3
(i) Mercury (II) iodide is brick red in colour.
(ii) The aqueous solution of NiSO_{4} which is pale green turns deep blue on addition of ethylene diamine.
7. (a) Derive the following formula:

$$
\begin{gathered}
h v=g_{\mathrm{N}} \beta_{\mathrm{N}} \mathrm{~B}_{\mathrm{Z}} \text { starting from } \\
v=\frac{\gamma \mathrm{B}_{\mathrm{Z}}}{2 \pi}
\end{gathered}
$$

(b) Draw and explain the e.s.r. spectrum of H atom.
(c) Using the following data for a compound, arrive at its structure :

Molecular weight : 108 (not an acidic compound)

UV spectrum : $\lambda_{\text {max }}$ at 254 nm and 202 nm

IR spectrum : 3420 (broad), 3064, 1500 and
$1455 \mathrm{~cm}^{-1}$
NMR spectrum : $\left(\delta, \mathrm{CDCl}_{3}\right): 3,85(s, 1 \mathrm{H})$, $4.55(s, 2 \mathrm{H})$ and $7.25(s, 5 \mathrm{H})$

Mass spectrum : m/z 108 (molecular ion) 79 (base peak).

Prominent M-1 peak. Large peaks at m / z 77 and 51.

Also correlate the spectral data with structural units present in the compound. 5

विजान स्नातक (बी. एस-सी.)
 सत्रांत परीक्षा
 दिसम्बर. 2021
 सी. एच. ड.-10 : स्पेक्ट्रमिकी

समय : 2 घण्टे
अधिकतम अंक : 50
नोट : (i) किन्हीं पाँच प्रश्नों के उत्तर दीजिए।
(ii) सभी प्रश्नों के अंक समान हैं।
(iii) लॉग सारणियों तथा अप्रोग्रामीय कैल्कलेटरों के उपयोग की अनमति है।
(iv) इलेक्ट्रॉन आवेश, $\quad e=1.6 \times 10^{-19} \mathrm{C}$,

इलेक्ट्रॉन का द्रव्यमान $=9.1 \times 10^{-31} \mathrm{~kg}$, $h=6.626 \times 10^{-34} \mathrm{Js}$,
$\epsilon_{0}=8.854 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$
$c=3 \times 10^{8} \mathrm{~ms}^{-1}$ ।

1. (क)इलेक्ट्रॉनिक विन्यास $1 s^{1} 2 s^{1}$ वाली हीलियम की उत्तेजित अवस्था के लिए पद-प्रतीक व्यत्पन्न कीजिए। हीलियम के परमाण स्पेक्ट्रम में, मल अवस्था से इस उत्तेजित अवस्था में संक्रमण के लिए कितनी रेखाएँ अपेक्षित हैं ? कारण बताइए। 4
(ख) NH_{3} अण में उपस्थित सममिति तत्वों को बताइए। उचित चित्र बनाइए। 3
(ग) उचित ऊर्जा-स्तर चित्र की सहायता से कार्बोनिल समह के इलेक्ट्रॉनिक संक्रमणों पर संयग्मन के प्रभाव की चर्चा कीजिए। 3
2. (क) ${ }^{1} \mathrm{H}{ }^{35} \mathrm{Cl}$ के घर्णन स्पेक्ट्रम में रेखाओं के बीच की दरी $21.18 \mathrm{~cm}^{-1}$ है। HCl की आबंध लम्बाई परिकलित कीजिए। H और Cl के लिए परमाण द्रव्यमान, क्रमशः 1 और 35 लीजिए। 4
(ख)निम्नलिखित अणओं में से किस/किनका नेट द्विध्रव आघर्ण होगा ? अपने उत्तर का कारण दीजिए :

2
(i) $\quad \mathrm{SF}_{6}$
(ii) NH_{3}
(ग) निम्नलिखित अणओं में से कौन-से सक्ष्म तरंग सक्रिय होंगे ? क्यों ?

2

$$
\mathrm{CHCl}_{3}, \mathrm{CH}_{4}, \mathrm{CO}_{2} \text { और } \mathrm{H}_{2} \mathrm{O}
$$

(घ) अवरक्त स्पेक्ट्रम में, ऐल्डिहाइडों की सामान्यत: संगत कीटोनों की तलना में उच्चतर कार्बोनिल आवत्ति होती है। इसका कारण बताइए।
3. (क) SiF_{2} वाष्प का $\mathrm{C}_{2} \mathrm{~V}$ समह होता है। इसके सममित तनन, सममित बंकन और प्रतिसममित तनन की आवत्तियाँ क्रमशः $855 \mathrm{~cm}^{-1}, 345 \mathrm{~cm}^{-1}$ और $872 \mathrm{~cm}^{-1}$ हैं। इसकी सम्पर्ण शन्य बिंद ऊर्जा परिकलित कीजिए।
(ख)दर्शाइए कि मल अवशोषण की कम्पनिक आवत्तियों का अनपात निम्नलिखित होता है :

$$
\frac{v_{\mathrm{HCl}}}{v_{\mathrm{DCl}}}=\sqrt{2}
$$

दिया है कि H, D और Cl के परमाण द्रव्यमान क्रमशः 1,2 और 35.5 हैं।
(ग) एक अवरक्त स्पेक्ट्रममापी का खण्ड आरेख बनाइए और उसके प्रत्येक घटक का संक्षिप्त वर्णन कीजिए। 4
4. (क) यदि 435.8 nm का Hg विकिरण उपयोग किया गया हो, तो $2900 \mathrm{~cm}^{-1}$ पर किसी ऐल्केन के $\mathrm{C}-\mathrm{H}$ तनन के लिए रमन कम्पनिक रेखाओं की स्थिति परिकलित कीजिए। 2
(ख) $\mathrm{C}_{2} \mathrm{H}_{2}$ दो अवरक्त बैंड और तीन रमन बैंड प्रदर्शित करता है जिनमें से कोई भी समान तरंग-संख्या पर प्रदर्शित नहीं होता है। अवरक्त बैंडों में से एक सरल PR संरचना प्रदर्शित करता है। $\mathrm{C}_{2} \mathrm{H}_{2}$ की संरचना के बारे में कारण सहित टिप्पणी कीजिए।
(ग) उचित चित्रों की सहायता से निम्नलिखत की व्याख्या कीजिए :

5
(i) पर्व-वियोजन
(ii) स्फरदीप्ति
5. (क)क्लोरीन अण के लिए मल अवस्था में वियोजन ऊर्जा $239.42 \mathrm{~kJ} \mathrm{~mol}^{-1}$ है। यदि क्लोरीन के लिए उत्तेजन ऊर्जा $881 \mathrm{~cm}^{-1}$ हो, तब क्लोरीन अण के लिए सांतत्यक कम्पनिक तरंग-संख्या की गणना कीजिए।
(ख) 'बैंड पारण चौडाई' पद से आप क्या समझते हैं ?

2
(ग) ई. एस. आर. स्पेक्ट्रमों को व्यत्पन्न स्पेक्ट्रमों के रूप में क्यों दर्शाया जाता है ?
(घ) निम्नलिखित में से किसका $\lambda_{\max }$ अधिक होगा और क्यों ?

2

1, 3-ब्यटाडाईन एवं 1,5 -हैक्साडाईन।
6. (क)प्रोटॉन के लिए नाभिकीय मैग्नेटॉन का मान परिकलित कीजिए। दिया गया है : 3

प्रोटॉन का द्रव्यमान $=1.672 \times 10^{-27} \mathrm{~kg}$ ।
(ख) n-ऑक्टेन के द्रव्यमान स्पेक्ट्रम में $m / z 114$, 85, 71 और 57 पर शिखरों की उत्पत्ति की व्याख्या कीजिए। 4
(ग) कारण दीजिए : 3
(i) मर्करी (II) आयोडाइड का रंग लाल होता है।
(ii) NiSO_{4} का हल्का हरा जलीय विलयन एथिलीन डाइऐमीन मिलाने पर गहरा नीला हो जाता है।
7. (क)समीकरण $v=\frac{\gamma \mathrm{B}_{\mathrm{Z}}}{2 \pi}$ से आरम्भ करके निम्नलिखित व्यंजक व्यत्पन्न कीजिए :

$$
h v=g_{\mathrm{N}} \beta_{\mathrm{N}} \mathrm{~B}_{\mathrm{Z}}
$$

(ख) हाइड्रोजन परमाण के ई. एस. आर. स्पेक्ट्रम को आरेखित कीजिए और उसकी व्याख्या कीजिए।
(ग) किसी यौगिक के निम्नलिखित आँकडों के उपयोग द्वारा, उसकी संरचना निर्धारित कीजिए : 5

अण भार : 108 (यह यौगिक अम्लीय नहीं है।)
पराबैंगनी स्पेक्ट्रम : $\lambda_{\text {max }} 254 \mathrm{~nm}$ और 202 nm
अवरक्त स्पेक्ट्रम : 3420 (विस्तत), 3064,
1500 और $1455 \mathrm{~cm}^{-1}$
एन. एम. आर. स्पेक्ट्रम : $\left(\delta, \mathrm{CDCl}_{3}\right): 3.85$
$(s, 1 \mathrm{H}), 4.55(s, 2 \mathrm{H})$ और $7.25(s, 5 \mathrm{H})$ ।
द्रव्यमान स्पेक्ट्रम $(\mathrm{m} / \mathrm{z}): 108$ (अण आयन),
79 (आधार शिखर), तीव्र ($\mathrm{M}-1$) शिखर तथा
77 और 51 पर बडे शिखर
इन स्पेक्ट्रमी आँकडों को अण में उपस्थित संरचनात्मक इकाइयों के साथ संबंधित कीजिए।

