MCA (Revised)
 Term-End Examination
 December, 2021

MCSE-004 : NUMERICAL AND STATISTICAL COMPUTING

Time : 3 hours
Maximum Marks : 100
Note: Question no. 1 is compulsory. Attempt any three questions from the rest. Use of calculator is allowed.

1. (a) What are generated errors? How are they different from propagated errors ? Show that $\mathrm{a}(\mathrm{b}-\mathrm{c}) \neq \mathrm{ab}-\mathrm{ac}$, where $\mathrm{a}=0.5555 \times 10^{1}$; $\mathrm{b}=0.4545 \times 10^{1}$ and $\mathrm{c}=0.4535 \times 10^{1}$.
(b) Solve the following system of equations using Gauss elimination method with partial pivoting :

$$
\begin{aligned}
& \mathrm{X}_{1}+\mathrm{X}_{2}+\mathrm{X}_{3}=3 \\
& 4 \mathrm{X}_{1}+3 \mathrm{X}_{2}+4 \mathrm{X}_{3}=11 \\
& 9 \mathrm{X}_{1}+3 \mathrm{X}_{2}+4 \mathrm{X}_{3}=16
\end{aligned}
$$

(c) Determine the missing term ' a ' in the following data, using forward differences :

x	1	2	3	4	5
$\mathrm{f}(\mathrm{x})$	3	7	a	21	31

(d) If a call centre receives on an average $\lambda=6$ blank calls per day, what is the probability that it will receive 4 blank calls on any given day?
(e) Calculate the value of the integral $5 \cdot 2$
$\int_{4} \log \mathrm{xdx}$ using Trapezoidal rule.
Take $\mathrm{h}=0 \cdot 2$.
(f) The tangent of the angle between the lines of regression y on x and x on y is $0 \cdot 6$, and $\sigma_{\mathrm{x}}=\frac{1}{2} \sigma_{\mathrm{y}}$. Find r_{xy}.
(g) Determine the $f(9)$ by applying Lagrange's formula on the following table of data :

x	5	7	11	13	17
$\mathrm{f}(\mathrm{x})$	150	392	1452	2366	5202

(h) Obtain the positive root of the equation $x^{3}-5 x-4=0 \quad$ by using Regula-Falsi method, twice.
2. (a) A farmer buys a quantity of cabbage seeds from a company that claims that approximately 90% of the seeds will germinate if planted properly. If four seeds are planted, what is the probability that exactly two will germinate?
(b) Calculate the value of the integral $\int_{4}^{5 \cdot 2} \log x d x$
using Weddle's rule.
(c) Three bags of the same type have the following number of balls :

Bag 1:2 black and 1 white
Bag 2: 1 black and 2 white
Bag 3 : 2 black and 2 white
Randomly one bag is selected and one ball is drawn, it turns out to be white. What is the probability of drawing a white ball again when the first one is not replaced ?
(d) Evaluate the integral $I=\int_{0}^{1} \frac{d x}{1+x}$ using Gauss-Legendre three point formula.
3. (a) Solve the initial value problem $u^{\prime}=-2 t u^{2}$ with $u(0)=1$ and $h=0 \cdot 2$ on the interval $[0,1]$. Use the fourth order classical Runge-Kutta method.
(b) Calculate the correlation coefficient for the following heights (in inches) of fathers (X) and their respective sons (Y) :

$\mathrm{X}:$	65	66	67	67	68	69	70	72
$\mathrm{Y}:$	67	68	65	68	72	72	69	71

Obtain the equations of the lines of regression. Also estimate the value of X for $Y=70$.

$$
10
$$

4. (a) Use Euler's method to find the value of y when $x=0 \cdot 1$. Given that $y(0)=1$ and $y^{\prime}=x^{2}+y$.
(b) A logistics firm has two trucks, which it hires out day-by-day. The number of demands for a truck on each day is distributed as Poisson variate with mean $1 \cdot 5$. Calculate the proportion of days on which
(i) neither truck is used, and
(ii) some demand is refused.
(c) Discuss the following terms with suitable example :
(i) Accuracy
(ii) Precision
(iii) Relative error
(iv) Absolute error
(v) Percentage error
5. Write short notes on any two of the following :
(a) Goodness-of-Fit Test
(b) Chi-Square Distribution
(c) Random Variables and their Types
