## MCA (Revised)

## Term-End Examination

## December, 2021

## MCS-033 : ADVANCED DISCRETE MATHEMATICS

Time: 2 hours
Maximum Marks : 50
Note: Question no. 1 is compulsory. Attempt any three questions from the rest.

1. (a) Find the order and degree of the following recurrence relations. Determine whether they are homogeneous or non-homogeneous.

$$
\begin{equation*}
a_{n}=a_{0} a_{n-1}+a_{1} a_{n-2}+\ldots+a_{n-1} a_{0} \tag{i}
\end{equation*}
$$

(ii)

$$
\mathrm{a}_{\mathrm{n}}=\mathrm{a}_{\mathrm{n}-1}+\mathrm{n}
$$

(b) Solve the following recurrence relation using the characteristic equation :

$$
\mathrm{a}_{\mathrm{n}}=4 \mathrm{a}_{\mathrm{n}-2} \text {, where } \mathrm{a}_{0}=4 \text { and } \mathrm{a}_{1}=6
$$

(c) Find the generating function for the following sequence :

$$
0^{2}, 1^{2}, 2^{2}, 3^{2}
$$

(d) Determine the number of subsets of a set of n elements, where $\mathrm{n} \geq 0$.
(e) Prove that the sum of the degree of vertices of any graph is twice the number of edges. 4
2. (a) Define planar graph. State whether the following graph is planar or not. Justify your answer.

(b) Solve the following recurrence relation using substitution method :

$$
\mathrm{a}_{\mathrm{n}}=\mathrm{a}_{\mathrm{n} / 2}+1, \text { for } \mathrm{n}=2^{\mathrm{k}}, \mathrm{k} \geq 1, \mathrm{a}_{1}=0
$$

3. (a) Show that for a subgraph H of a graph G , $\Delta(\mathrm{H}) \leq \Delta$ (G).
(b) State the Tower of Hanoi problem. Write its recurrence relation and explain its formulation.
4. (a) Explain the steps required to solve the linear homogeneous recurrence relation with constant coefficients through characteristic equation.
(b) What are generating functions? Why are they used?
5. (a) Draw a $K_{4}$ graph and show that it is four colourable.
(b) Define an Eulerian circuit and an Euler path. State whether the following graph is an Eulerian circuit or an Euler path. Explain.

