MCA (Revised)

Term-End Examination

December, 2021

MCS-031 : DESIGN AND ANALYSIS OF ALGORITHMS

Time: 3 hours
Maximum Marks : 100
Note: Question no. 1 is compulsory. Attempt any three questions from the rest.

1. (a) Explain Principle of Optimality with the help of an example.
(b) Enumerate any five well-known techniques for designing algorithms for solving problems.
(c) Define Big-O (Oh) Asymptotic Notation. Also arrange the following growth rates in an increasing order :
$\mathrm{O}\left(\mathrm{n}^{3}\right), \mathrm{O}\left(3^{\mathrm{n}}\right), \mathrm{O}(\mathrm{n} \log \mathrm{n}), \mathrm{O}(1), \mathrm{O}(\log \mathrm{n})$
(d) Explain Vertex Cover Problem (VCP) with suitable example.
(e) Prove that the run time complexity of binary search algorithm in worst case is $\mathrm{O}\left(\log _{2} \mathrm{n}\right)$.
(f) Write the limitations of Strassen's Matrix Multiplication algorithm. Also show that the running time of this algorithm is $\mathrm{O}\left(\mathrm{n}^{2 \cdot 81}\right)$.
(g) Solve the following Recurrence Relation:

$$
\mathrm{t}_{\mathrm{n}}-\mathrm{t}_{\mathrm{n}-1}-\mathrm{t}_{\mathrm{n}-2}=0, \quad \mathrm{t}_{0}=0 \text { and } \mathrm{t}_{1}=1
$$

2. (a) Compare Kruskal's algorithm and Prim's algorithm. Determine the time complexity of Kruskal's algorithm.
(b) Sort the given list using Quicksort and show the steps involved in the process :

$$
90,100,30,20,5,80,40
$$

Show that the best case time complexity of Quicksort is $\mathrm{O}\left(\mathrm{n} \log _{2} \mathrm{n}\right)$.
3. (a) Write Dijkstra's algorithm to find Single-Source Shortest Path. Apply the algorithm to find shortest path from starting vertex 'a'.

(b) Define P, NP, NP complete and NP hard problems with suitable examples.
4. (a) Explain Push Down Automata with an example. How is it different from Finite Automata? Discuss with suitable example. 10
(b) Write DFS algorithm and traverse the following tree with starting node as A. 10

5. (a) Explain ambiguity in Context-Free Grammar (CFG). Show that $\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E}|\mathrm{E} * \mathrm{E}|$ id is ambiguous.
(b) Describe Chomsky classification of Grammars.
(c) Write short notes on the following : $\quad 4 \times 2 \frac{1}{2}=10$
(i) Halting Problem of Turing Machine
(ii) 0/1 Knapsack Problem
(iii) Satisfiability Problem
(iv) Clique Problem

