No. of Printed Pages : 4
MCS-013

M. C. A. (REVISED)/B. C. A. (REVISED)
 (MCA/BCA)

Term-End Examination

December, 2021
MCS-013 : DISCRETE MATHEMATICS

Time : 2 Hours
Maximum Marks : 50

Note : Question No. 1 is compulsory. Attempt any three questions from the rest.

1. (a) Explain if the following sentences are proposition or not and why :
(i) Sun rises in the east.
(ii) Prepare for your exam.
(iii) Raju is 10 -year old.
(iv) How far is Mumbai from here?
(b) Prove that:

$$
\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\ldots \ldots+\frac{1}{n(n+1)}=\frac{n}{n+1}
$$

using mathematical induction.
(c) What is a proper subset ? Explain with the help of a suitable example.
(d) Find number of integers between 100 and 999 consisting of distinct even digits. 2
(e) If $f(x)=x^{3}$ and $g(x)=\left(x^{2}+1\right) \forall x \in \mathrm{R}$, where R is the set of real numbers.

Find :
(i) $(f \circ g)$
(ii) $(g \circ f)$
(iii) $(g \circ g)$
(f) Find the number of distinguishable words that can be framed from the letters of the word "UNIVERSITY".
(g) Find dual of $(\mathrm{A} \cup \mathrm{B}) \cap \mathrm{C}$ and $(\mathrm{A} \cap \mathrm{B}) \cap \mathrm{C}$.
2. (a) Show that $\sqrt{17}$ is irrational.
(b) Find the Boolean expression for the following logic circuit :

4

(c) Show that:

2

$$
\sim(p \vee q)=\sim p \wedge \sim q
$$

3. (a) Write the set expressions for the following

Venn diagrams :
3

(b) Prove that:

$$
{ }^{n+1} \mathrm{C}_{r}={ }^{n} \mathrm{C}_{r-1}+{ }^{n} \mathrm{C}_{r}
$$

(c) A die is rolled once. Find the probability of each of the following events :
(i) getting an odd number
(ii) getting at most 3
(iii) getting at least 3
(iv) getting at least 7
4. (a) Make truth table for the following :

$$
p \rightarrow(\sim q \vee \sim r) \wedge(p \vee \sim r)
$$

(b) Give geometric representation for the following :

$$
R \times\{4\} ;
$$

where R is a natural number.
(c) What is Relation ? Explain equivalence relation with the help of an example.
(d) State and explain Pigeonhole principle. 2
5. (a) Draw logic circuit for the following Boolean expression :
$\left(\mathrm{X}^{\prime}+\mathrm{Y}+\mathrm{Z}\right)+\left(\mathrm{X}+\mathrm{Y}+\mathrm{Z}^{\prime}\right)+\left(\mathrm{X}^{\prime} . \mathrm{Y}\right)$
(b) In how many ways 10 students can be grouped into 3 groups ?
(c) What is power set? Find power set of set $\mathrm{A}=\{1,2,4,6\}$. 3

