No. of Printed Pages : 7
MCS-212

MASTER OF COMPUTER

APPLICATIONS

(MCA) (NEW)

Term-End Examination

December, 2021
MCS-212 : DISCRETE MATHEMATICS

Time: 3 Hours
Maximum Marks : 100

Note: Question No. 1 is compulsory and carries 40 marks. Attempt any three questions from the rest four questions (Question Nos. 2 to 5).

1. (a) Make the truth table for :

5
(i) $\quad p \rightarrow q \wedge \sim r$
(ii) $p \oplus q \wedge r \rightarrow p \wedge r$
(b) Show that $\sqrt{5}$ is irrational using the proof by contradiction.
(c) If $\mathrm{A}=\{a, b, c\}$ and $\mathrm{B}=\{x, y, z\}$, find:
(i) $\mathrm{A} \times \mathrm{B}$
(ii) $\mathrm{A} \times \mathrm{A}$
(iii) $\mathrm{A} \times \phi$
(d) Find the regular expression for the language :

$$
\mathrm{L}=\{a a, a b a, a b b a, a b b b a, \ldots \ldots \ldots . .\}
$$

(e) Give one difference between Deterministic Finite Automata and Non-deterministic Finite Automata.
(f) Find the order and degree of the following recurrence relations :
(i) $a_{n}=a_{n-1}+a_{n-2}$
(ii) $a_{n}=\sqrt{a_{n-1}}+a_{n-2}^{2}$
(g) Determine the number of integer solutions of the equation ;

4

$$
\left(x_{1}+x_{2}+x_{3}+x_{4}\right)=7
$$

where $x_{i} \geq 0$ for all $i=1,2,3,4$.
(h) How many three-letter words, which has vowel in the middle position, can be formed using the letter of English alphabets ? 3
(i) Consider graph $G=K_{4}$ on four vertices a, b, c, d. Make three sub-graphs of graph G. 3
(j) Show that C_{6} is a bipartite graph. 3
(k) Does the following graph have Eulerian circuit? If yes, give the Eulerian circuit, if no, explain the reasons : 4

2. (a) What is a tautology ? Find, if the following is a tautology :

$$
[(p \rightarrow q) \wedge \sim q] \rightarrow \sim p
$$

(b) Explain how principle of mathematical induction can be used to prove :

$$
1^{2}+2^{2}+3^{2}+\ldots \ldots n^{2}=\frac{n}{6}(n+1)(2 n+1), \forall n \in \mathrm{~N}
$$

(c) Find the Boolean expression for the output of the logic circuit given below :

(d) Find, if the following Boolean expressions are equivalent over the two-element Boolean algebra $\mathbf{B}=\{0,1\}$: 4

$$
\mathrm{X}=(a \wedge b) \vee(a \wedge c) \text { and } \mathrm{Y}=a \wedge\left(b \vee c^{\prime}\right)
$$

3. (a) Find the power set of the set $\mathrm{A}=\{a, b, c, d\}$.
(b) If $\mathrm{A}=\{1,2,3,4\}$ and $\mathrm{B}=\{2,3,4,5,6,7\}$ and $f: \mathrm{A} \rightarrow \mathrm{B}$ is $f(x)=x+1$, then find the domain and range of f.
(c) If $f(x)=x^{2}$ and $g(x)=x+1$, then find $f \circ g(x)$ and $(g \circ f)(x)$. 4
(d) Explain the meaning of each symbol in the finite automata definition $\mathrm{M}=\left(\mathrm{Q}, \Sigma, \delta, q_{0}, \mathrm{~F}\right)$.
(e) Consider the following finite automata:

(i) What would be the values of $\mathrm{Q}, \Sigma, \delta, q_{0}$ and F for the automata given above?
(ii) Give one string that will be accepted and one string that will not be accepted by this finite automata. 3
4. (a) If there are 7 men and 5 women, how many circular arrangements are possible in which women do not sit adjacent to each other ?
(b) What is the probability that a number between 1 to 1,000 is divisible by neither 2 , nor 3 nor 5 ?
(c) What is the meaning of 'distributions' of objects ? Explain with the help of an example.
(d) Explain the Fibonacci numbers. Also explain the recurrence relation for Fibonacci numbers. 5
5. (a) Define the following terms in the context of a graph, with the help of an example : 8
(i) Digraph
(ii) Complete graph of three vertices
(iii) Degree of a vertex
(iv) A regular graph
(b) Explain the terms tree and forest in the context of graphs, with the help of an example. 5
(c) What are Hamiltonian graphs ? Explain with the help of an example.

5
(d) State the travelling salesperson problem. 2

