BACHELOR OF COMPUTER APPLICATIONS (BCA) (Pre-Revised) Term-End Examination December, 2021

CS-71 : COMPUTER ORIENTED NUMERICAL TECHNIQUES

Time : 3 hours

Maximum Marks: 75

- Note: Question number 1 is compulsory. Attempt any three questions from question numbers 2 to 5. Use of scientific calculator is permitted.
- 1. (a) Differentiate between Propagated error and Generated error. Prove that Total relative error is equal to the sum of relative propagated error and relative generated error.
 - (b) A polynomial passes through the following set of points :

x	1	2	3	4
у	-1	- 1	1	5

Find the polynomial using Newton's forward interpolation.

6

- (c) Evaluate the integral I = $\int_{0}^{1} \frac{dx}{1+x}$ by using Simpson's $\frac{1}{3}$ rule with h = 0.25 and h = 0.5. 6
- (d) What are the two pitfalls of Gauss elimination method ? 6
- (e) Find the approximate value of the root of the equation $x^3 + x - 1 = 0$, near x = 1, using Bisection method (two iterations only). 6
- 2. (a) Use Runge-Kutta method to solve the initial value problem y' = (t - y)/2 on [0, 0.2] with y(0) = 1. Compare the solution with h = 0.2and h = 0.1. 10
 - (b) Use Lagrange's interpolation formula to find the value of sin (π/6) from the data given below :

X	0	π/4	π/2
Y = sin(x)	0	0.70711	1.0

5

CS-71

3. (a) Calculate the value of the integral $\int_{4}^{5\cdot 2} \log x \, dx \quad \text{by using (i) Simpson's } \frac{1}{3} \text{ rule,}$ and (ii) Simpson's $\frac{3}{8}$ rule. (Take h = 0.2) 8

(b) Solve the following system of linear equations by using Gauss elimination method:

> x + 2y + z = 32x + 3y + 3z = 103x - y + 2z = 13

4. (a) Solve the following system of equations using Jacobi's iteration method, perform two iterations :

8x + y + z = 82x + 4y + z = 4x + 3y + 5z = 5

(b) Solve the following system of equations by using Gauss-Seidel method, perform two iterations :

> 27x + 6y - z = 856x + 15y + 2z = 72x + y + 54z = 110

P.T.O.

7

8

5. (a) Prove the following relations between Δ , ∇ ,

 E, δ and μ operators :

(i)
$$\Delta = E - 1$$

(ii)
$$\nabla = 1 - E^{-1}$$

(iii)
$$\delta = E^{1/2} - E^{-1/2}$$

(iv)
$$\mu = \frac{1}{2} [E^{1/2} + E^{-1/2}]$$

(b) Given
$$\frac{dy}{dx} = x^3 + y$$
, $y(0) = 1$. Find $y(0.3)$ by

using Euler's method using h = 0.1.