BACHELOR OF COMPUTER APPLICATIONS (BCA) (Pre-Revised)

Term-End Examination

December, 2021

CS-71 : COMPUTER ORIENTED NUMERICAL TECHNIQUES

Time : 3 hours
Maximum Marks : 75
Note: Question number 1 is compulsory. Attempt any three questions from question numbers 2 to 5 . Use of scientific calculator is permitted.

1. (a) Differentiate between Propagated error and Generated error. Prove that Total relative error is equal to the sum of relative propagated error and relative generated error.
(b) A polynomial passes through the following set of points :

x	1	2	3	4
y	-1	-1	1	5

Find the polynomial using Newton's forward interpolation.
(c) Evaluate the integral $I=\int_{0}^{1} \frac{d x}{1+x}$ by using

Simpson's $\frac{1}{3}$ rule with $\mathrm{h}=0 \cdot 25$ and $\mathrm{h}=0 \cdot 5$.
(d) What are the two pitfalls of Gauss elimination method?
(e) Find the approximate value of the root of the equation $x^{3}+x-1=0$, near $x=1$, using Bisection method (two iterations only).
2. (a) Use Runge-Kutta method to solve the initial value problem $\mathrm{y}^{\prime}=(\mathrm{t}-\mathrm{y}) / 2$ on $[0,0 \cdot 2]$ with $\mathrm{y}(0)=1$. Compare the solution with $\mathrm{h}=0 \cdot 2$ and $\mathrm{h}=0 \cdot 1$.
(b) Use Lagrange's interpolation formula to find the value of $\sin (\pi / 6)$ from the data given below :

X	0	$\pi / 4$	$\pi / 2$
$\mathrm{Y}=\sin (\mathrm{x})$	0	$0 \cdot 70711$	$1 \cdot 0$

3. (a) Calculate the value of the integral $5 \cdot 2$ $\int_{4} \log \mathrm{xdx}$ by using (i) Simpson's $\frac{1}{3}$ rule, and (ii) Simpson's $\frac{3}{8}$ rule. (Take $h=0 \cdot 2$)
(b) Solve the following system of linear equations by using Gauss elimination method:

$$
\begin{aligned}
& x+2 y+z=3 \\
& 2 x+3 y+3 z=10 \\
& 3 x-y+2 z=13
\end{aligned}
$$

4. (a) Solve the following system of equations using Jacobi's iteration method, perform two iterations :

$$
\begin{aligned}
& 8 x+y+z=8 \\
& 2 x+4 y+z=4 \\
& x+3 y+5 z=5
\end{aligned}
$$

(b) Solve the following system of equations by using Gauss-Seidel method, perform two iterations :

$$
\begin{aligned}
& 27 x+6 y-z=85 \\
& 6 x+15 y+2 z=72 \\
& x+y+54 z=110
\end{aligned}
$$

5. (a) Prove the following relations between Δ, ∇, E, δ and μ operators :
(i) $\Delta=\mathrm{E}-1$
(ii) $\quad \nabla=1-\mathrm{E}^{-1}$
(iii) $\delta=\mathrm{E}^{1 / 2}-\mathrm{E}^{-1 / 2}$
(iv) $\mu=\frac{1}{2}\left[\mathrm{E}^{1 / 2}+\mathrm{E}^{-1 / 2}\right]$
(b) Given $\frac{d y}{d x}=x^{3}+y, y(0)=1$. Find $y(0 \cdot 3)$ by using Euler's method using $h=0 \cdot 1$.
