BCS-042

BACHELOR OF COMPUTER

 APPLICATIONS (BCA)(Revised)
Term-End Examination
December, 2021
BCS-042 : INTRODUCTION TO ALGORITHM DESIGN

Time : 2 Hours
Maximum Marks : 50
Note: (i) Question No. 1 is compulsory which carries 20 marks.
(ii) Answer any three questions from the rest.

1. (a) State True or False:
$\mathrm{O}\left(n \log _{2} n\right)$ is better than $\mathrm{O}\left(n^{2}\right)$ but not as food as $\mathrm{O}(n)$.
(b) Write the names of the following symbols : 2

$$
\theta, \Omega, \forall, \in
$$

(c) Define O (big Oh) notation. By using the basic definition O (big Oh), show that: 4

$$
6 x^{2}+6 x+1=\mathrm{O}\left(x^{2}\right)
$$

(d) Create an adjacency matrix for the following graph :

(e) Multiply 10056×2037 using divide and conquer technique. Apply Karatsuba's method.
(f) Briefly explain any two different approaches to solve the recurrence relation.
2. (a) Arrange the following growth rate in increasing order :

$$
\mathrm{O}\left(2^{n}\right), \mathrm{O}\left(n^{3}\right), n!, \sqrt{n}
$$

(b) (i) Traverse the following graph using BFS. The starting node is A:

4

(ii) Perform the complexity analysis of the above algorithm. 4
3. (a) Explain the basic concept of quick sort algorithm and apply it to sort the following list of numbers : 7

151054253578

Show all the intermediate steps.
(b) Define the term backtracking and enlist any two problems that can be solved by backtracking.

3
4. (a) Write a recurrence relation for the following recursive factorial function: 3 int fact (int n)
\{
if $(\mathrm{n}==1)$
return 1
else
return n * fact ($\mathrm{n}-1$)
\}
(b) State Horner's rule for polynomial evaluation and apply the rule for evaluating the following polynomial expression :

$$
\begin{aligned}
p(x)=6 x^{7}+7 x^{6}-5 x^{5}+3 x^{3}+ & 6 x^{2} \\
& +8 x+7
\end{aligned}
$$

Show stepwise iteration.
5. (a) How many comparisons are needed for binary search algorithm in a set of 64 elements?

3
(b) Write Prim's algorithm to solve minimum cost spanning tree problem and explain. 7

BCS-042

