BACHELOR OF COMPUTER APPLICATIONS (BCA) (REVISED)

Term-End Examination

December, 2021
BCS-012 : BASIC MATHEMATICS
Time: 3 Hours
Maximum Marks : 100

Note: Question number 1 is compulsory. Attempt any three questions from the remaining questions.

1. (a) Find the inverse of matrix:

$$
\mathrm{A}=\left[\begin{array}{rrr}
1 & 2 & 5 \\
2 & 3 & 1 \\
-1 & 1 & 1
\end{array}\right]
$$

(b) If 7 times the 7 th term of an A.P. is equal to 11 times the 11th term of the A.P., find its 18 th term.
(c) If z is a complex number such that $\quad|z-2 i|=|z+2 i|, \quad$ show that $\operatorname{Im}(z)=0$.
(d) Show that $|\vec{a}| \vec{b}+|\vec{b}| \vec{a}$ is perpendicular to $|\vec{a}| \vec{b}-|\vec{b}| \vec{a}$, for any two non-zero vectors \vec{a} and \vec{b}.
(e) Use the principle of mathematical induction to show that:

$$
1+4+7+\ldots \ldots+(3 k-2)=\frac{1}{2} k(3 k-1)
$$

(f) Evaluate $\int \frac{d x}{e^{x}+1}$.
(g) Find the quadratic equation whose roots are $(2-\sqrt{3})$ and $(2+\sqrt{3})$.
(h) Find the length of the curve :

$$
y=3+\frac{1}{2}(x)
$$

from $(0,3)$ to $(2,4)$.
2. (a) Find the shortest distance between: 5

$$
\overrightarrow{r_{1}}=(1+\lambda) \hat{i}+(2-\lambda) \hat{j}+(1+\lambda) \hat{k}
$$

and $\overrightarrow{r_{2}}=2(1+\mu) \hat{i}+(1-\mu) \hat{j}+(-1+2 \mu) \hat{k}$
(b) Find the points of local minima and local maxima, for function :

$$
f(x)=\frac{3}{4} x^{4}-8 x^{3}+\frac{45}{2} x^{2}+2015
$$

(c) Find the sum of all integers between 100 and 1000 which are divisible by 7 .
(d) If $A=\left[\begin{array}{rrr}1 & 1 & 3 \\ 0 & 5 & 2 \\ 2 & -1 & 7\end{array}\right]$, show that A is row equivalent to I_{3}. 5
3. (a) A stone is thrown into a lake, producing circular ripple. The radius of the ripple is increasing at the rate of $5 \mathrm{~m} / \mathrm{s}$. How fast is
the area inside the ripple increasing when the radius is 10 m ?
(b) If $(x+i y)^{1 / 3}=a+i b$, prove that:

$$
\frac{x}{a}+\frac{y}{b}=4\left(a^{2}-b^{2}\right)
$$

(c) Find the 10th term of the harmonic progression :

$$
\frac{1}{7}, \frac{1}{15}, \frac{1}{23}, \frac{1}{31}, \ldots \ldots \ldots .
$$

(d) For any two vectors \vec{a} and \vec{b}, show that:
4. (a) Determine the values of x for which:

$$
f(x)=5 x^{3 / 2}-3 x^{5 / 2}, x>0
$$

is increasing and decreasing.
(b) Solve the following system of liner equations by using matrix inverse : 10

$$
\begin{gathered}
3 x+4 y+7 z=-2 \\
2 x-y+3 z=6 \\
2 x+2 y-3 z=0
\end{gathered}
$$

and hance, obtain the value of $3 x-2 y+z$.
(c) Find the area bounded by the curves $y=x^{2}$ and $y^{2}=x$.
5. (a) If $y=\left(x+\sqrt{x^{2}+1}\right)^{3}$, find $\frac{d y}{d x}$. 5
(b) A company wishes to invest at most \$ 12,000 in project A and project B . Company must invest at least $\$ 2,000$ in project A and at least $\$ 4,000$ in project B .

If project A gives return of 8% and project B gives return of 10%, find how much money is to be invested in the two projects to maximize the return.
(c) Solve the equation :

$$
2 x^{3}-15 x^{2}+37 x-30=0
$$

if roots of the equation are in $\mathrm{A} . \mathrm{P}$.

