BACHELOR OF SCIENCE (BSCG)

Term-End Examination

December, 2021
BPHCT-135 : THERMAL PHYSICS AND
STATISTICAL MECHANICS

Time : 2 Hours
Maximum Marks : 50

Note: (i) All questions are compulsory. However, internal choices are given.
(ii) You can use a calculator.
(iii) Symbols have their usual meanings.
(iv) The marks for each question are indicated against it.

1. Attempt any five parts : $2 \times 5=10$
(a) Calculate the root mean square speed $\left(v_{\text {rms }}\right)$ of oxygen molecules in a gas at 300 K. Take, the molecular weight of oxygen molecule to be $32 \mathrm{~g} \mathrm{~mol}^{-1}$.
(b) What do you understand by Self-diffusion? Write one example of self-diffusion.
(c) Write Kelvin-Planck and Clausius statements for the second law of thermodynamics.
(d) The first energy equation is given as :

$$
\left(\frac{\partial \mathrm{U}}{\partial \mathrm{~V}}\right)_{\mathrm{T}}=\mathrm{T}\left(\frac{\partial \mathrm{P}}{\partial \mathrm{~T}}\right)_{\mathrm{V}}-\mathrm{P}
$$

Show that internal energy of an ideal gas is independent of its volume.
(e) Write one example each of (i) closed and (ii) isolated thermodynamic system.
(f) Write down the parametric and exact equation of state for a real gas.
(g) Distinguish between the macrostate and microstate of a system.
(h) What is the significance of degeneracy parameter A ? What does A $\ll 1$ correspond to?
2. Answer any two parts :
(a) State three assumptions made by van der Waals and write van der Waals' equation of state for μ moles of a gas. $3+2$
(b) Obtain an expression of mean free path for zeroth order approximation.
(c) What is the process of sedimentation in Brownian motion ? Show that during sedimentation, particle concentration decreases exponentially as height increases. $1+4$
3. Attempt any two parts : $5 \times 2=10$
(a) Explain, what are (i) isobaric, (ii) isochoric, (iii) isothermal, and (iv) cyclic processes. Represent these processes on indicator diagrams.
(b) Obtain an expression for work done in an isothermal expansion process for an deal gas.
(c) Two identical gaseous systems containing 1 mol of ideal gas each are at 500 K temperature and 3.0 atm . pressure. The
ratio of heat capacities at constant pressure and constant volume (γ) is 1.4 . One of the gases is expanded adiabatically, while other isothermally till both reach atmospheric pressure. Calculate their final volumes. [Given : $\mathrm{R}=8.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$].
4. Attempt any two parts : $5 \times 2=10$
(a) Suppose that two ideal gases having n_{1} moles and n_{2} moles are enclosed in two separate containers at constant temperature T and pressure P . If these two gases mix, obtain an expression for the entropy of mixing per mole of mixture.
(b) An ideal heat engine operates by taking in steam from a source at a temperature of
$327^{\circ} \mathrm{C}$ and rejecting heat to a sink at a temperature of $27^{\circ} \mathrm{C}$. The heat taken in each cycle is 500 kcal. Calculate :
(i) The Carnot efficiency of the engine
(ii) The work done in each cycle in units of joules. $(1$ calorie $=4.2 \mathrm{~J})$
(c) Using Maxwell's relations, obtain the first $\mathrm{T} d \mathrm{~S}$ equation.
5. Attempt any two parts :
$5 \times 2=10$
(a) Suppose that a phase space consists of three cells labelled 1, 2 and 3 and two particles A and B. Enumerate the different macrostates and microstates corresponding to each of them when the particles are (i) indistinguishable, (ii) distinguishable.
(b) Derive the expression for the singleparticle partition function in μ space for an ideal monoatomic gas consisting of N identical particles each of m occupying a volume V. You may use the relation :

$$
\int_{-\infty}^{\infty} \exp \left[\frac{-\beta x^{2}}{2 m}\right] d x=\sqrt{\frac{2 m \pi}{\beta}}
$$

(c) Derive an expression for the zero point energy of a Fermion system.

BPHCT-135

विज्ञान स्नातक (बी.एस.सी.जी.)

सत्रांत परीक्षा

दिसम्बर. 2021
बी.पी.एच.सी.टी.-135: ऊष्मीय भौतिकी और सांख्यिकीय यांत्रिकी

समय :2 घण्टे अधिकतम अंक : 50

नोट : (i) सभी प्रश्न अनिवार्य हैं। लेकिन आंतरिक विकल्प दिए गए हैं।
(ii) आप कैल्कलेटर का प्रयोग कर सकते हैं।
(iii) प्रतीकों के अपने सामान्य अर्थ हैं।
(iv) प्रत्येक प्रश्न के अंक उसके सामने दिए गए हैं।

1. कोई पाँच भाग हल कीजिए :
$2 \times 5=10$
(क)एक गैस में 300 K पर ऑक्सीजन अणओं की औसत वर्ग माध्य मल चाल $\left(v_{\text {rms }}\right)$ परिकलित कीजिए। ऑक्सीजन अणओं का आण्विक भार (molecular weight) $32 \mathrm{~g} \mathrm{~mol}^{-1}$ लें।
(ख)स्व-विसरण से आप क्या समझते हैं ? स्व-विसरण का एक उदाहरण दीजिए।
(ग) ऊष्मागतिकी के द्वितीय नियम के लिए केल्विन-प्लांक और क्लासियस के कथन लिखिए।
(घ) प्रथम ऊर्जा समीकरण को निम्नलिखित व्यंजक द्वारा दिया जाता है :

$$
\left(\frac{\partial \mathrm{U}}{\partial \mathrm{~V}}\right)_{\mathrm{T}}=\mathrm{T}\left(\frac{\partial \mathrm{P}}{\partial \mathrm{~T}}\right)_{\mathrm{V}}-\mathrm{P}
$$

सिद्ध कीजिए कि आदर्श गैस की आंतरिक ऊर्जा आयतन पर निर्भर नहीं करती।
(ङ) (i) बंद और (ii) विलगित ऊष्मागतिक तंत्र का एक-एक उदाहरण लिखिए।
(च) वास्तविक गैस के प्राचलिक और यथार्थ अवस्था समीकरण लिखिए।
(छ) किसी तंत्र के लिए स्थल अवस्था और सक्ष्म अवस्था में अन्तर बताइए।
(ज) अपभ्रष्टता गणांक A का क्या महत्त्व है ? $\mathrm{A} \ll 1$ का क्या तात्पर्य है ?
2. कोई दो भाग हल कीजिए :
(क)वाण्डर वाल्स द्वारा दी गई तीन अवधारणाओं को लिखिए और गैस के μ मोलों के लिए वाण्डर वाल्स अवस्था समीकरण भी लिखिए। $3+2$
(ख) शन्य कोटि सन्निकटन के लिए माध्य मक्त पथ का व्यंजक प्राप्त कीजिए।
(ग) ब्राउनी गति में अवसादन प्रक्रम क्या है ? सिद्ध कीजिए कि अवसादन के दौरान ऊँचाई के साथ कण के संकेद्रण में चरघातांकी कमी आती है। $1+4$
3. कोई दो भाग हल कीजिए : $5 \times 2=10$
(क) (i) समदाबी, (ii) समआयतनिक, (iii) समतापी, और (iv) चक्रीय प्रक्रमों की व्याख्या कीजिए। इन प्रक्रमों को सचक आरेखों पर निरूपित कीजिए।
(ख)आदर्श गैस के लिए समतापी प्रसार प्रक्रम में किए गए कार्य का व्यंजक व्यत्पन्न कीजिए।
(ग) आदर्श गैस के 1 mol के दो सर्वसम गैसीय तंत्र 500 K ताप और 3.0 atm . दाब पर हैं। गैस की अचर दाब एवं अचर आयतन पर ऊष्माधारिताओं का अनपात $(\gamma) 1.4$ है। इनमें से एक गैस को रुद्धोष्म प्रक्रम और दसरी को समतापी प्रक्रम से वायमंडलीय दाब तक प्रसारित किया जाता है। इन दोनों गैसों के अंतिम आयतनों के मान परिकलित कीजिए। (दिया गया है : $\mathrm{R}=8.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$)।
4. कोई दो भाग हल कीजिए :
(क)मान लीजिए कि दो अलग-अलग पात्रों में अचर तापमान T और दाब P पर दो आदर्श गैसों के

क्रमशः n_{1} मोल और n_{2} मोल हैं। यदि इन गैसों
को मिश्रित किया जाए, तो मिश्रण की प्रतिमोल

मिश्रण एन्ट्रॉपी का व्यंजक प्राप्त कीजिए।
(ख)एक आदर्श ऊष्मा इंजन, जो कि तापमान $327^{\circ} \mathrm{C}$ वाले स्रोत से भाप अवशोषित करता है और $27^{\circ} \mathrm{C}$ वाले अभिगम को ऊर्जा निराकत करता है, को प्रचालित किया जाता है। प्रत्येक प्रक्रम (cycle) में 500 kcal की ऊष्मा ली जाती है। गणना कीजिए :
(i) इंजन की कार्नो दक्षता
(ii) प्रत्येक प्रक्रम में किया गया कार्य जल में परिकलित कीजिए (1 कैलोरी $=4.2 \mathrm{~J}$)।
(ग) मैक्सवेल संबंधों का उपयोग करके प्रथम $\mathrm{T} d \mathrm{~S}$ समीकरण प्राप्त कीजिए।
5. कोई दो भाग हल कीजिए : $5 \times 2=10$
(क)मान लें कि प्रावस्था समष्टि की तीन कोष्ठिकाओं को $1,2,3$ द्वारा लेबलित किया जाता है, और इनमें दो कण A और B विद्यमान हैं। इन कणों की संगत विभिन्न स्थल अवस्थाओं और सक्ष्म अवस्थाओं की गणना कीजिए जब कण (i) अविभेद्य, (ii) विभेद्य हों।
(ख)आयतन V में परिबद्ध, m द्रव्यमान वाले N सर्वसम कण से बने एकपरमाणक आदर्श गैस के

लिए μ समष्टि में एक कण संवितरण फलन का

व्यंजक प्राप्त कीजिए। आप निम्नलिखित संबंध का

उपयोग कर सकते हैं :

$$
\int_{-\infty}^{\infty} \exp \left[\frac{-\beta x^{2}}{2 m}\right] d x=\sqrt{\frac{2 m \pi}{\beta}}
$$

(ग) फर्मियॉन तंत्र के लिए शन्य बिन्द ऊर्जा का व्यंजक

व्यत्पन्न कीजिए।

