1. Which of the following statements are true ? Give reasons for your answers in the form of a short proof or a counter-example, whichever is appropriate:
$2 \times 10=20$
(i) The operation * is a binary operation on N , where :

$$
x * y=\text { l.c.m. }(x, y) \forall x, y \in \mathbf{N}
$$

(ii) The set of all functions of $\{1,2, \ldots \ldots \ldots, 10\}$ to itself forms a group w. r. t. the composition of functions.
(iii) If π_{1} and π_{2} are in S_{15} such that $\operatorname{sign} \quad\left(\pi_{1}\right)=\operatorname{sign}\left(\pi_{2}\right), \quad$ then $\mathrm{o}\left(\pi_{1}\right)=\mathrm{o}\left(\pi_{2}\right)$.
(iv) If G is a group and $\mathrm{H} \Delta \mathrm{G}, \mathrm{K} \Delta \mathrm{G}$, then $\mathrm{G} \simeq \mathrm{H} \times \mathrm{K}$.
(v) A_{6} has a unique proper normal subgroup.
(vi) The ring \mathbf{C} is generated by $\{1\}$.
(vii) If $f: \mathrm{R}_{1} \rightarrow \mathrm{R}_{2}$ is a ring homomorphism, then R_{1} must be isomorphic to a subring of R_{2}.
(viii) If \mathbf{Z} is a subring of a ring S , then \mathbf{Z} must be an ideal of S .
(ix) If R is a field, then so is $\mathrm{R}[x]$.
(x) If R is a commutative ring, then every non-trivial proper ideal of $\mathrm{R}[x]$ intersects Rx non-trivially.

Section-B
 (Marks : 30)

2. (a) Let X be the set of all lines in $\mathbf{R} \times \mathbf{R}$. Consider the relation ' \sim ' on X , given by " $L_{1} \sim L_{2}$ iff L_{1} is perpendicular to L_{2} ". Check whether ' \sim ' is reflexive, symmetric or transitive.
(b) Let I be a non-trivial ideal of a field F. Prove that $\mathrm{I}=\mathrm{F}$. 3
(c) Show that the map $f: \mathbf{Z}+i \mathbf{Z} \rightarrow \mathbf{Z}_{2}$, defined by $f(a+i b)=(a-b) \bmod 2$, is a ring epimorphism. Also obtain ker f. 4
3. (a) Let:

$$
\mathrm{R}=\left\{\left.\left[\begin{array}{ll}
a & a-b \\
a-b & a
\end{array}\right] \right\rvert\, a, b \in \mathbf{Z}\right\}
$$

Check whether or not R is a ring w. r. t. matrix addition and multiplication.
(b) Find all the possible generators of a cyclic group of order 12.
(c) Give two distinct elements of the quotient group $\mathbf{C}[x] /\left\langle x^{2}\right\rangle$, with justification. 2
4. (a) Express the permutation:

$$
\sigma=\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
3 & 7 & 6 & 4 & 2 & 1 & 5
\end{array}\right)
$$

as a product of disjoint cycles. Also find σ^{-1} in S_{7} and write it as a product of disjoint cycles. Further, obtain sign (σ). 4
(b) Obtain the possible orders of a subgroup of a group of order 45. Further, obtain the corresponding number of right cosets in each case.

4
(c) Let S be a commutative ring and $x \in \mathrm{~S}$ be a zero divisor of S . Obtain all the zero divisors of S in S_{x}.

Section-C (Marks : 50)

5. (a) (i) Find $o\left(\frac{a}{b}+\mathbf{Z}\right)$ in \mathbf{Q} / \mathbf{Z}, where

$$
(a, b)=1 \text { and } b \neq 0
$$

(ii) Show that there are elements in \mathbf{Q} / \mathbf{Z} of order n, for each $n \in \mathbf{N}$.
(iii) Is \mathbf{Q} / \mathbf{Z} cyclic? If so, find a generator. If it is not cyclic, give reasons for saying so.

7
(b) How many distinct monic irreducible polynomials of degree 3 with no linear term are there in $\mathbf{Z}_{3}[x]$? Give reasons for your answer.
6. (a) Let ($\mathrm{G},$.) be a group and H be a subgroup of Aut (G). Check whether or not $(\mathrm{H} \times \mathrm{G}, *)$ is a group, where :

$$
\left(\phi_{1}, x_{1}\right) *\left(\phi_{2}, x_{2}\right)=\left(\phi_{1} \circ \phi_{2}, \phi_{2}^{-1}\left(x_{1}\right) \cdot x_{2}\right)
$$

defines the operation *, for ϕ_{1}, ϕ_{2} in H and x_{1}, x_{2} in G.
(b) Consider the map $\phi_{n}: \mathbf{Z} \rightarrow \mathbf{Z}: \phi_{n}(z)=n z$, where $n \in \mathbf{Z}$. Find the conditions on $n \in \mathbf{Z}$ under which ϕ_{n} is a ring homomorphism.
7. (a) Let R be a commutative ring with unity and I be an ideal of R. Prove the statement : "If I is a prime ideal, then I is the kernal of a homomorphism from R to an integral domain."

Further, state the converse of the statement above and check whether it is true or not. 8
(b) Give an example, with justification, of a group with exactly two distinct subgroups.

2
8. (a) Let G be a finite group and let N be a normal subgroup of G of order n. Further, let n and $|\mathrm{G}: \mathrm{N}|(=m)$ be coprime. Show that $\mathrm{N}=\left\{a \in \mathrm{G} \mid a^{n}=e\right\}$. 6
(b) Let R be a commutative ring with unity. Let $x^{2}=x \forall x \in \mathrm{R}$. Show that $x^{n}=x$ $\forall x \in \mathrm{R}$ and $\forall n \in \mathbf{N}$. Hence find the set of nilpotent elements of R. 4
9. (a) Let $\mathrm{I}=\langle x, 2\rangle$ and $\mathrm{J}=\langle x, 3\rangle$ be ideals in $\mathbf{Z}[x]$. Prove that $\mathrm{IJ}=\langle x, 6\rangle$. 5
(b) Let G be a finite group. Let $\mathrm{S}=\left\{g \in \mathrm{G} \mid g^{5}=e\right\}$, where e is the identity element of G. Show that $|\mathrm{S}|$ is odd.
10. (a) Prove that $\frac{\mathbf{R}^{5}}{\mathbf{R}^{4}} \simeq \mathbf{R}$ as groups. 8
(b) Let R be a ring, and I be an ideal of R. Find (char R - char I). 2

बी. ए. जी./बी. एस. सी. जी.

सत्रांत परीक्षा

दिसम्बर. 2021
बी.एम.टी.सी.-134 : बीजगणित
समय : 3 घण्टे अधिकतम अंक : 100

नोट : (i) इस प्रश्न-पत्र में तीन भाग हैं- भाग 'क', भाग 'ख’ और भाग ‘ग’ ।
(ii) भाग 'क' और भाग 'ख' के सभी प्रश्न अनिवार्य हैं।
(iii) भाग 'ग' से किन्हीं पाँच प्रश्नों के उत्तर दीजिए।
(iv) कैलकलेटर का प्रयोग करने की अनमति नहीं है।

1. निम्नलिखित में से कौन-से कथन सत्य हैं ? अपने उत्तरों के कारण एक लघ उपपत्ति या प्रति-उदाहरण जो भी उपयक्त हो, के रूप में दीजिए : $2 \times 10=20$
(i) संक्रिया *, \mathbf{N} पर द्भिआधारी संक्रिया है, जहाँ :

$$
x * y=\text { l.c.m. }(x, y) \forall x, y \in \mathbf{N}
$$

(ii) फलनों के संयोजन के सापेक्ष समच्चय $\{1,2$, \qquad $10\}$ से स्वयं तक परिभाषित सभी फलनों का समच्चय एक समह है।
(iii) यदि π_{1} और $\pi_{2}, \mathrm{~S}_{15}$ में इस प्रकार हैं कि $\operatorname{sign}\left(\pi_{1}\right)=\operatorname{sign}\left(\pi_{2}\right)$, तो $o\left(\pi_{1}\right)=o\left(\pi_{2}\right)$ ।
(iv) यदि G कोई समह है और $\mathrm{H} \Delta \mathrm{G}, \mathrm{K} \Delta \mathrm{G}$, तो $G \simeq H \times K$ I
(v) A_{6} का एक अद्वितीय उचित प्रसामान्य उपसमह है।
(vi) वलय $\mathbf{C},\{1\}$ से जनित है।
(vii) यदि $f: \mathrm{R}_{1} \rightarrow \mathrm{R}_{2}$ एक वलय समाकारिता है, तो R_{1} को R_{2} के किसी उपवलय के तल्यकारी होना होगा।
(viii) यदि Z किसी वलय S की उपवलय है, तो Z को S का ideal होना चाहिए।
(ix) यदि R एक क्षेत्र है, तो $\mathrm{R}[x]$ भी एक क्षेत्र है।
(x) यदि R एक क्रमविनिमेय वलय है, तो $\mathrm{R}[x]$ की प्रत्येक अतच्छ उचित गणजावली $\mathrm{R} x$ को अतच्छीय रूप से प्रतिच्छेद करती है।

भाग-ख
(अंक : 30)
2. (क)मान लीजिए $\mathrm{X}, \mathbf{R} \times \mathbf{R}$ में सभी रेखाओं का समच्चय है। X पर संबंध ' ~' पर विचार कीजिए जो " $\mathrm{L}_{1} \sim \mathrm{~L}_{2}$ यदि और केवल यदि $\mathrm{L}_{1}, \mathrm{~L}_{2}$ पर लंब है" से परिभाषित है। जाँच कीजिए कि क्या ' ~' स्वतल्य, सममित या संक्रामक है। 3
(ख) मान लीजिए I एक क्षेत्र F की एक अतच्छ गणजावली है। सिद्ध कीजिए कि $\mathrm{I}=\mathrm{F}$ । 3
(ग) दिखाइए कि फलन $f: \mathbf{Z}+i \mathbf{Z} \rightarrow \mathbf{Z}_{2}$, जो $f(a+i b)=(a-b) \bmod 2$ से परिभाषित है, एक आच्छादक वलय समाकारिता है। साथ ही, $\operatorname{ker} f$ भी ज्ञात कीजिए।

4
3. (क) मान लीजिए $\mathrm{R}=\left\{\left.\left[\begin{array}{cc}a & a-b \\ a-b & a\end{array}\right] \right\rvert\, a, b \in \mathbf{Z}\right\}$ । जाँच कीजिए कि आव्यह योग व गणन के सापेक्ष R एक वलय है या नहीं।
(ख)कोटि 12 वाले एक चक्रीय समह के सभी संभव जनक ज्ञात कीजिए।
(ग) विभाग समहह $\mathbf{C}[x] /\left\langle x^{2}\right\rangle$ के दो भिन्न-भिन्न अवयव, पष्टि सहित, दीजिए।
4. (क)क्रमचय :

$$
\sigma=\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
3 & 7 & 6 & 4 & 2 & 1 & 5
\end{array}\right)
$$

को असंयुक्त चक्रो के गणनफल के रूप में लिखिए। साथ ही, S_{7} में σ^{-1} ज्ञात कीजिए और इसे असंयुक्त चक्रों के गुणनफल के रूप में लिखिए। आगे, $\operatorname{sign}(\sigma)$ ज्ञात कीजिए।4
(ख)कोटि 45 वाले किसी समूह के उपसमूह की संभव कोटियाँ ज्ञात कीजिए। साथ ही, प्रत्येक स्थिति में संगत दक्षिण सहसमुच्चयों की संख्या ज्ञात कीजिए।
(ग) मान लीजिए S एक क्रमविनिमेय वलय है और $x \in \mathrm{~S}, \mathrm{~S}$ का एक शन्य का भाजक है। S के S_{x} में सभी शन्य के भाजक ज्ञात कीजिए। 2

> भाग—ग
(अंक : 50)
5. (क) (i) \mathbf{Q} / \mathbf{Z} में $\circ\left(\frac{a}{b}+\mathbf{Z}\right)$ ज्ञात कीजिए, जहाँ $(a, b)=1$ और $b \neq 0$ ।
(ii) प्रत्येक $n \in \mathbf{N}$ के लिए, दिखाइए कि \mathbf{Q} / \mathbf{Z} में कोटि n वाले अवयव हैं।
(iii) क्या \mathbf{Q} / Z चक्रीय है ? यदि है, तो इसका एक जनक ज्ञात कीजिए। यदि चक्रीय नहीं है, तो कारण दीजिए कि क्यों नहीं है।
(ख) $\mathrm{Z}_{3}[x]$ में घात 3 वाले भिन्न-भिन्न कितने एकगणांकी अखंडनीय बहपद हैं, जिनमें कोई एकघात पद नहीं है ? अपने उत्तर के कारण दीजिए।
6. (क)मान लीजिए ($\mathrm{G},$.$) एक समह है और$ H, Aut (G) का एक उपसमह है। जाँच कीजिए कि क्या $(\mathrm{H} \times \mathrm{G}, *)$ एक समह है, जहाँ $\phi_{1}, \phi_{2} \in \mathrm{H}$ और $x_{1}, x_{2} \in \mathrm{G}$ के लिए संक्रिया * की परिभाषा है : 7
$\left(\phi_{1}, x_{1}\right) *\left(\phi_{2}, x_{2}\right)=\left(\phi_{1} \circ \phi_{2}, \phi_{2}^{-1}\left(x_{1}\right) \cdot x_{2}\right)$
(ख) फलन $\phi_{n}: \mathbf{Z} \rightarrow \mathbf{Z}: \phi_{n}(z)=n z$, जहाँ $n \in \mathbf{Z}$ पर विचार कीजिए। $n \in \mathbf{Z}$ पर वे प्रतिबंध ज्ञात कीजिए जिनके अधीन ϕ_{n} एक वलय समाकारिता है।

3
7. (क)मान लीजिए R एक तत्समकी क्रमविनिमेय वलय है और I, R की एक गणजावली है। निम्न कथन सिद्ध कीजिए :
"यदि I एक अभाज्य गणजावली है, तो I, R से एक पर्णांकीय प्रांत पर किसी समाकारिता की अष्टि है।"

आगे, उपर्यक्त कथन का विलोम लिखिए और जाँच कीजिए कि यह सत्य है या नहीं।
(ख)एक ऐसे समह का, पष्टि सहित, उदाहरण दीजिए जिसके केवल दो अलग-अलग उपसमह हों। 2
8. (क)मान लीजिए G एक परिमित समच्चय है और मान लीजिए N कोटि n वाला G का एक प्रसामान्य उपसमह है। साथ ही, मान लीजिए n और $|\mathrm{G}: \mathrm{N}|(=m)$ असहभाज्य हैं। दिखाइए कि $\mathrm{N}=\left\{a \in \mathrm{G} \mid a^{n}=e\right\} \mid$

6
(ख) मान लीजिए R एक तत्समकी क्रमविनिमेय वलय है। मान लीजिए $x^{2}=x \forall x \in \mathrm{R}$ । दिखाइए कि $x^{n}=x \forall x \in \mathrm{R}$ और $\forall n \in \mathrm{~N}$ । इस प्रकार, R के शन्यंभावी अवयवों का समच्चय ज्ञात कीजिए।

4
9. (क)मान लीजिए $\mathrm{I}=\langle x, 2\rangle$ और $\mathrm{J}=\langle x, 3\rangle, \mathbf{Z}[x]$ में गणजावलियाँ हैं। सिद्ध कीजिए कि $\mathrm{IJ}=\langle x, 6\rangle$ । 5
(ख) मान लीजिए G एक परिमित समह है। मान लीजिए $\mathrm{S}=\left\{g \in \mathrm{G} \mid g^{5}=e\right\}$, जहाँ e, G का तत्समक अवयव है। दिखाइए कि $|\mathrm{S}|$ विषम है। 5
10. (क)सिद्ध कीजिए कि $\frac{\mathbf{R}^{5}}{\mathbf{R}^{4}} \simeq \mathbf{R}$, समहों के रूप में। 8 (ख) मान लीजिए R एक वलय है और I, R की एक गणजावली है। (char R -char I) ज्ञात कीजिए।

