[2] BMTC-134

Section—A (Marks: 20)

- Which of the following statements are true ? Give reasons for your answers in the form of a short proof or a counter-example, whichever is appropriate : 2×10=20
 - (i) The operation * is a binary operation onN, where :
 - $x * y = \text{l.c.m.}(x, y) \forall x, y \in \mathbf{N}$
 - (ii) The set of all functions of {1,2,....,10}to itself forms a group w. r. t. the composition of functions.
 - (iii) If π_1 and π_2 are in S_{15} such that sign $(\pi_1) = \operatorname{sign}(\pi_2)$, then $o(\pi_1) = o(\pi_2)$.
 - (iv) If G is a group and $H \Delta G$, $K \Delta G$, then $G \simeq H \times K$.

BMTC-134

BACHELOR OF ARTS/ BACHELOR OF SCIENCE

(BAG/BSCG)

Term-End Examination

December, 2021

BMTC-134 : ALGEBRA

Time : 3 Hours

No. of Printed Pages : 16

Maximum Marks : 100

Note: (i) The question paper has three Sections—

Sections A, B and C.

- (ii) All questions in Section A and Section B are compulsory.
- (iii) Do any **five** questions from those given

in Section C.

(iv) Use of calculator is not allowed.

[3] BMTC-134

- (v) A₆ has a unique proper normal subgroup.
- (vi) The ring C is generated by $\{1\}$.
- (vii) If $f: \mathbb{R}_1 \to \mathbb{R}_2$ is a ring homomorphism, then \mathbb{R}_1 must be isomorphic to a subring of \mathbb{R}_2 .
- (viii) If **Z** is a subring of a ring S, then **Z** must be an ideal of S.
- (ix) If R is a field, then so is R[x].
- (x) If R is a commutative ring, then every non-trivial proper ideal of R [x] intersects Rx non-trivially.

Section—B (Marks: 30)

2. (a) Let X be the set of all lines in R × R. Consider the relation '~' on X, given by "L₁ ~ L₂ iff L₁ is perpendicular to L₂". Check whether '~' is reflexive, symmetric or transitive.

- (b) Let I be a non-trivial ideal of a field F.
 - Prove that I = F. 3
- (c) Show that the map $f: \mathbf{Z} + i\mathbf{Z} \to \mathbf{Z}_2$,
 - defined by $f(a+ib) = (a-b) \mod 2$, is a
 - ring epimorphism. Also obtain ker f. 4
- 3. (a) Let:

$$\mathbf{R} = \left\{ \begin{bmatrix} a & a-b \\ a-b & a \end{bmatrix} | a,b \in \mathbf{Z} \right\}$$

Check whether or not R is a ring w. r. t. matrix addition and multiplication. 5

- (b) Find all the possible generators of a cyclic
 - group of order 12. 3
- (c) Give two distinct elements of the quotient
 - group $\mathbf{C}[x]/\langle x^2 \rangle$, with justification. 2

BMTC-134

4.

(a) Express the permutation :

 $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 7 & 6 & 4 & 2 & 1 & 5 \end{pmatrix}$

as a product of disjoint cycles. Also find σ^{-1} in S₇ and write it as a product of disjoint cycles. Further, obtain sign (σ). 4

- (b) Obtain the possible orders of a subgroup of a group of order 45. Further, obtain the corresponding number of right cosets in each case.
- (c) Let S be a commutative ring and $x \in S$ be a zero divisor of S. Obtain all the zero divisors of S in S_x . 2

Section—C (Marks : 50)

5. (a) (i) Find
$$o\left(\frac{a}{b} + \mathbf{Z}\right)$$
 in **Q/Z**, where
 $(a, b) = 1$ and $b \neq 0$.

(ii) Show that there are elements in \mathbf{Q}/\mathbf{Z} of order n, for each $n \in \mathbf{N}$.

[6]

- (iii) Is Q/Z cyclic ? If so, find a generator. Ifit is not cyclic, give reasons for sayingso. 7
- (b) How many distinct monic irreducible polynomials of degree 3 with no linear term are there in $\mathbf{Z}_3[x]$? Give reasons for your answer. 3
- 6. (a) Let (G, .) be a group and H be a subgroup of Aut (G). Check whether or not (H \times G, *) is a group, where :

$$\left(\phi_{1}, x_{1}\right) * \left(\phi_{2}, x_{2}\right) = \left(\phi_{1} \circ \phi_{2}, \phi_{2}^{-1}\left(x_{1}\right) \cdot x_{2}\right)$$

defines the operation *, for ϕ_1, ϕ_2 in H and x_1, x_2 in G. 7

(b) Consider the map $\phi_n : \mathbf{Z} \to \mathbf{Z} : \phi_n(z) = nz$, where $n \in \mathbf{Z}$. Find the conditions on $n \in \mathbf{Z}$ under which ϕ_n is a ring homomorphism. 3 7. (a) Let R be a commutative ring with unity and I be an ideal of R. Prove the statement :"If I is a prime ideal, then I is the kernal of a homomorphism from R to an integral domain."

Further, state the converse of the statement above and check whether it is true or not. 8

- (b) Give an example, with justification, of a group with exactly two distinct subgroups.
 - $\mathbf{2}$
- 8. (a) Let G be a finite group and let N be a normal subgroup of G of order *n*. Further, let *n* and |G:N|(=m) be coprime. Show that $N = \{a \in G \mid a^n = e\}$.
 - (b) Let R be a commutative ring with unity. Let $x^2 = x \forall x \in \mathbb{R}$. Show that $x^n = x$ $\forall x \in \mathbb{R}$ and $\forall n \in \mathbb{N}$. Hence find the set of nilpotent elements of R. 4

9. (a) Let
$$I = \langle x, 2 \rangle$$
 and $J = \langle x, 3 \rangle$ be ideals in $Z[x]$. Prove that $IJ = \langle x, 6 \rangle$. 5

(b) Let G be a finite group. Let $S = \{g \in G | g^5 = e\}$, where e is the identity

[8]

element of G. Show that |S| is odd. 5

10. (a) Prove that
$$\frac{\mathbf{R}^5}{\mathbf{R}^4} \simeq \mathbf{R}$$
 as groups. 8

(b) Let R be a ring, and I be an ideal of R. Find(char R - char I). 2

[9] BM ⁻	ГС-134		[10] BMTC-134
BMTC-134			भाग-क (अंक : 20)
बी. ए. जी.∕बी. एस. सी. जी.	1.	निम्र्ना उत्तरों	लेखित में से कौन-से कथन सत्य हैं ? अपने के कारण एक लघ उपपत्ति या प्रति-उदाहरण जो
सत्रांत परीक्षा		भी उ	पयक्त हो, के रूप में दीजिए : 2×10=20
दिसम्बर. 2021		(i)	संक्रिया *, N पर द्रिआधारी संक्रिया है, जहाँ : $x * y = l.c.m. (x, y) \forall x, y \in N$
बी.एम.टी.सी134 : बीजगणित		(ii)	फलनों के संयोजन के सापेक्ष समच्चय
समय : 3 घण्टे अधिकतम अंक	: 100		{1,2,,10} से स्वयं तक परिभाषित सभी फलनों का समच्चय एक समह है।
नोट : (i) इस प्रश्न-पत्र में तीन भाग हैं— भाग 'क	', भाग	(iii)	यदि π_1 और π_2 , S_{15} में इस प्रकार हैं कि
'ख' और भाग 'ग'।			$\operatorname{sign}(\pi_1) = \operatorname{sign}(\pi_2), \ \overrightarrow{\operatorname{cl}} \ \operatorname{o}(\pi_1) = \operatorname{o}(\pi_2)$
(ii) भाग 'क' और भाग 'ख' के सभी	प्रश्न	(iv)	यदि G कोई समह है और H ∆ G, K ∆ G, तो G ≃ H × K I
अनिवार्य हैं।		(v)	A_6 का एक अद्वितीय उचित प्रसामान्य उपसमह
<i>(iii)</i> भाग 'ग' से किन्हीं पाँच प्रश्नों के	उत्तर		है।
दीजिए।		(vi)	वलय $\mathbf{C}, \{1\}$ से जनित है।
(iv) कैलकलेटर का प्रयोग करने की स् नहीं है।	अनमति	(vii)	यदि $f: \mathrm{R}_1 ightarrow \mathrm{R}_2$ एक वलय समाकारिता है, तो R_1 को R_2 के किसी उपवलय के तल्यकारी होना होगा।

P. T. O.

	[12]	BMTC-134
3.	(क)मान लीजिए $\mathbf{R} = \left\{ \begin{bmatrix} a & a-b \\ a-b & a \end{bmatrix} a = \begin{bmatrix} a & b \end{bmatrix} \right\}$	$,b\in \mathbf{Z}ig\}$ I
	जाँच कीजिए कि आव्यह योग व गणन	के सापेक्ष
	R एक वलय है या नहीं।	5
	(ख)कोटि 12 वाले एक चक्रीय समह के स	नभी संभव
	जनक ज्ञात कोजिए।	3
	(ग) विभाग सम्ह $\mathbf{C}[x]/\left\langle x^2 ight angle$ के दो f अवयव, पष्टि सहित, दीजिए।	भेन्न-भिन्न 2
4.	(क)क्रमचय :	
	$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 7 & 6 & 4 & 2 & 1 & 5 \end{pmatrix}$	
	को असंयुक्त चक्रों के गणनफल के लिखिए। साथ ही, S ₇ में σ ⁻¹ ज्ञात क इसे असंयुक्त चक्रों के गुणनफल के लिखिए। आगे, sign(σ) ज्ञात कीजिए।	रूप में ोजिए और रूप में 4
	(ख)कोटि 45 वाले किसी समूह के उपसमूह कोटियाँ ज्ञात कीजिए। साथ ही, प्रत्येक	की संभव स्थिति में
	संगत दक्षिण सहसमुच्चयों की संर	ख्या ज्ञात
	काजग	4

[11] BMTC-134 (viii) यदि Z किसी वलय S की उपवलय है, तो Z को S का ideal होना चाहिए।

- (ix) यदि R एक क्षेत्र है, तो R[x] भी एक क्षेत्र है।
- (x) यदि R एक क्रमविनिमेय वलय है, तो R[x]
 की प्रत्येक अतच्छ उचित गणजावली Rx को अतच्छीय रूप से प्रतिच्छेद करती है।

भाग—ख (अंक:30)

2. (क)मान लीजिए $X, \mathbf{R} \times \mathbf{R}$ में सभी रेखाओं का समच्चय है। X पर संबंध '~' पर विचार कीजिए जो " $L_1 \sim L_2$ यदि और केवल यदि L_1, L_2 पर लंब है" से परिभाषित है। जाँच कीजिए कि क्या '~' स्वतल्य, सममित या संक्रामक है। 3 (ख)मान लीजिए I एक क्षेत्र F की एक अतच्छ गणजावली है। सिद्ध कीजिए कि I = F | 3 (ग) दिखाइए कि फलन $f: \mathbf{Z} + i\mathbf{Z} \rightarrow \mathbf{Z}_2$, जो $f(a+ib) = (a-b) \mod 2$ से परिभाषित है, एक आच्छादक वलय समाकारिता है। साथ ही, $\ker f$ भी ज्ञात कीजिए। 4

	[14]	BMTC-134
6.	(क)मान लीजिए (G,.) एक सम	ह है और
	H, Aut (G) का एक उपसमह है।	जाँच कीजिए
	कि क्या $\left(\mathrm{H} imes\mathrm{G},^{*} ight)$ एक सम	ह है, जहाँ
	$\phi_1, \phi_2 \in \mathrm{H}$ और $x_1, x_2 \in \mathrm{G}$ के	लिए संक्रिया
	* की परिभाषा है :	7
	$(\phi_1, x_1) * (\phi_2, x_2) = (\phi_1 \circ \phi_2, \phi_2^{-1})$	$^{1}\left(x_{1} ight) .x_{2} ight)$
	(ख)फलन $\phi_n: \mathbf{Z} o \mathbf{Z}: \phi_n\left(z\right) = nz$,	जहाँ $n \in \mathbf{Z}$
	पर विचार कीजिए। $n \in \mathbf{Z}$ पर वे	प्रतिबंध ज्ञात
	कोजिए जिनके अधीन ϕ_n एक वल	य समाकारिता
	है।	3

 (क)मान लीजिए R एक तत्समकी क्रमविनिमेय वलय है और I, R की एक गणजावली है। निम्न कथन सिद्ध कीजिए :

> "यदि I एक अभाज्य गणजावली है, तो I, R से एक पर्णांकीय प्रांत पर किसी समाकारिता की अष्टि है।"

> आगे, उपर्यक्त कथन का विलोम लिखिए और जाँच कीजिए कि यह सत्य है या नहीं। 8

[13]BMTC-134(ग) मान लीजिए S एक क्रमविनिमेय वलय है और $x \in S, S$ का एक शन्य का भाजक है। S के S_x में सभी शन्य के भाजक ज्ञात कीजिए।2भाग—ग(अंक : 50)

5. (क) (i)
$$\mathbf{Q} / \mathbf{Z}$$
 में o $\left(\frac{a}{b} + \mathbf{Z}\right)$ ज्ञात कीजिए, जहाँ $(a,b) = 1$ और $b \neq 0$ ।

(ii) प्रत्येक
$$n \in \mathbf{N}$$
 के लिए, दिखाइए कि
 \mathbf{Q} / \mathbf{Z} में कोटि n वाले अवयव हैं।

[16] BMTC-134
(ख)मान लीजिए G एक परिमित समह है। मान
लीजिए
$$S = \{g \in G | g^5 = e\}$$
, जहाँ e, G का
तत्समक अवयव है। दिखाइए कि $|S|$ विषम है। 5
10. (क)सिद्ध कीजिए कि $\frac{R^5}{R^4} \approx R$, समहों के रूप में। 8
(ख)मान लीजिए R एक वलय है और I, R की
एक गणजावली है। (char R – char I)
ज्ञात कीजिए। 2

8. (क)मान लीजिए G एक परिमित समच्चय है और
मान लीजिए N कोटि
$$n$$
 वाला G का एक
प्रसामान्य उपसमह है। साथ ही, मान लीजिए n
और $|G:N|(=m)$ असहभाज्य हैं। दिखाइए कि
 $N = \{a \in G | a^n = e\}$ । 6

(ख)मान लीजिए R एक तत्समकी क्रमविनिमेय वलय है। मान लीजिए $x^2 = x \forall x \in \mathbb{R}$ । दिखाइए कि $x^n = x \forall x \in \mathbb{R}$ और $\forall n \in \mathbb{N}$ । इस प्रकार, R के शन्यंभावी अवयवों का समच्चय ज्ञात कीजिए। 4

9. (क)मान लीजिए
$$I = \langle x, 2 \rangle$$
 और $J = \langle x, 3 \rangle$, $Z[x]$
में गणजावलियाँ हैं। सिद्ध कीजिए कि
 $IJ = \langle x, 6 \rangle$ । 5

BMTC-134