BMTC-133

BACHELOR OF SCIENCE/BACHELOR

OF ARTS
(BSCG/BAG)

Term-End Examination

December, 2021
BMTC-133 : REAL ANAYSIS

Time : 3 Hours
Maximum Marks : 100
Note: (i) The question paper has three SectionsSections A, B and C.
(ii) All questions in Section A and Section B are compulsory.
(iii) Do any five questions from those given in Section C
(iv) Use of calculator is not allowed.

$$
\text { Section-A } \quad \text { (Marks : 20) }
$$

1. Which of the following statements are true ? Give reasons for your answers in the form of a
short proof or counter-example, whichever is appropriate :
$2 \times 10=20$
(i) Every bounded subset of \mathbf{R} is closed.
(ii) The negation of the statement $p \vee q \rightarrow r$ is $(p \vee q) \wedge \sim r$.
(iii) $7^{n}+1$ is divisible by 2 for every $n \in \mathbf{N}$.
(iv) The sequence $\left(3^{n}-2^{n}\right)_{n \in \mathbf{N}}$ is increasing.
(v) The series $\sum_{n=1}^{\infty}(-1)^{n}$ diverges.
(vi) Every strictly decreasing function is invertible.
(vii) The equation $x^{3}-2 x+3=0$ has a real root between -2 and 1 .
(viii) An integrable function has finitely many points of discontinuities.
(ix) The function f defined on \mathbf{R} by $f(x)=|x+5|$ has a local minimum at $x=-5$.
(x) If $f(0)=0$ and $f(x)=x \sin \frac{1}{x}$ for $x \neq 0$, then f is continuous at 0 .

Section-B

(Marks : 30)
2. (a) Check whether the set $]-5,7] \cap[-7,5[$ contains any ε-neighbourhood of 3 . 2
(b) What are the sufficient conditions for a set to have a limit point? Check whether the set $\left\{\left. \pm \frac{1}{n} \right\rvert\, n \in \mathbf{N}\right\}$ has any limit point in \mathbf{R}.
3. (a) Using the definition, show that the sequence $\left(\frac{1}{\sqrt{n}}\right)_{n \in \mathbf{N}}$ is Cauchy.
(b) Give an example of a divergent sequence which has two convergent subsequences. Justify your choice of example.
4. Test the following series for convergence : 5
(i) $\frac{1.2}{3^{2} .4^{2}}+\frac{3.4}{5^{2} .6^{2}}+\frac{5.6}{7^{2} .8^{2}}+\ldots \ldots .$.
(ii) $\sum_{n=1}^{\infty} \sqrt{n^{2}+1}-\sqrt{n^{3}-1}$
5. Check whether the following functions are continuous on \mathbf{R}. If they are discontinuous, find the nature of discontinuities. :
(i) $\quad f(x)=\left\{\begin{array}{cc}\frac{x^{2}-1}{x-1}, & \text { if } x \neq 1 \\ 1, & \text { if } x=1\end{array}\right.$
(ii) $g(x)= \begin{cases}2, & \text { if } x \in \mathbf{Q} \\ 4, & \text { if } x \notin \mathbf{Q}\end{cases}$
6. Let:

$$
f(x)=3 x+2, x \in[0,1]
$$

Let \mathbf{P}_{n} be the tagged partition formed by the subintervals :
$\mathrm{I}_{1}=\left[0, \frac{1}{n}\right], \mathrm{I}_{2}=\left[\frac{1}{n}, \frac{2}{n}\right], \ldots \ldots \ldots .$.

$$
\mathrm{I}_{i}=\left[\frac{i-1}{n}, \frac{i}{n}\right], \ldots \ldots \ldots . ., \mathrm{I}_{n}=\left[\frac{n-1}{n}, 1\right]
$$

where the tags are given by :

$$
t_{i}=\frac{i}{n}, i=1,2, \ldots \ldots, n
$$

Calculate the Riemann sums. Is f Riemann integrable? Justify your answer.
7. Using the Weierstrass M-test, show that the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}+x^{2}}, x \in \mathbf{R}$ converges uniformly.

Section-C (Marks : 50

8. (a) Find the interior of the set: 4

$$
\left.\bigcap_{n=1}^{\infty}\right] \frac{1}{n}, 1+\frac{1}{n}[
$$

(b) Prove that $\left(a_{n}\right)_{n \in \mathbf{N}}$ defined by $a_{1}=1$ and $a_{n+1}=\sqrt{3 a_{n}}$ for $n>1$, is increasing, bounded and converges to 3 . 6
9. (a) Test the conditional convergence of the series:

$$
1-\frac{1}{2^{1 / 3}}+\frac{1}{3^{1 / 3}}-\frac{1}{4^{1 / 3}}+\ldots \ldots .
$$

Is it absolutely convergent? Justify your answer.

5
(b) Prove that between any two real roots of $e^{x} \sin x=1$, there is at least one real root of $e^{x} \cos x+1=0$.
10. (a) For $x \in[0,1]$ and $n \in \mathbf{N}$, define $f_{n}(x)=2 x+\frac{x}{n}$. Find the limit function f of the sequence $\left(f_{n}\right)_{n \in \mathbf{N}}$. Is f continuous ? Does $\quad \int_{0}^{1} f(x) d x=\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x$

Justify your answers.
5
(b) Show that $\left(a_{n}\right)_{n \in \mathbf{N}}$, where $a_{n}=\frac{n}{n^{2}+2}$ is monotone. Is $\left(a_{n}\right)_{n \in \mathbf{N}}$ Cauchy ? Is $\left(a_{n}\right)_{n \in \mathbf{N}}$ convergent? Justify your answers.
11. (a) Give a direct proof and an indirect proof of the statement "The product of two odd integers is an odd integer."
(b) If f is differentiable on $\mathrm{I}=[a, b]$ and k is a number between $f^{\prime}(a)$ and $f^{\prime}(b)$, then show that there exists at least one c such that $f^{\prime}(c)=k$. 5
12. (a) Let the function f be defined on \mathbf{R} by $f(x)=x^{3} \sin \left(\frac{1}{x}\right)$, if $x \neq 0$ and $f(0)=0$.

Show that f^{\prime} is continuous of \mathbf{R}, but it is not derivable at 0 .
(b) Find the sequence of partial sums of the series $\sum_{n=1}^{\infty} \frac{x}{n(n+1)}$, where $x \in[0, \infty[$. Does the sequence converge pointwise ? Does it converge uniformly ? Justify your answers.
13. (a) Apply the Cauchy integral test to find: 5

$$
\lim _{n \rightarrow \infty} \sum_{r=1}^{3 n} \frac{n}{(3 n+r)^{2}}
$$

(b) Test the following series for convergence :
(i) $\sum_{n=1}^{\infty}\left(\frac{n+3}{2 n+1}\right)^{n}$
(ii) $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{n^{2}}{n+1}$
14. (a) Find the greatest value of the function:

$$
f(x)=x^{4}-2 x^{3}-3 x^{2}+4 x+7
$$

over the interval $[0,1]$.
(b) Check whether the set of rational numbers is a field or not.

स्नातक उपाधि कार्यक्रम
[बी. एस-सी. (जी)/ बी.ए. (जी)] सत्रांत परीक्षा

दिसम्बर. 2021
बी.एम.टी.सी.-133 : वास्तविक विश्लेषण
समय : 3 घण्टे
अधिकतम अंक : 100

नोट : (i) इस प्रश्न-पत्र में तीन भाग हैं- भाग 'क', भाग 'ख' और भाग 'ग' ।
(ii) भाग 'क' और भाग 'ख' के सभी प्रश्न अनिवार्य हैं।
(iii) भाग 'ग' से किन्हीं पाँच प्रश्नों के उत्तर दीजिए।
(iv) कैलकलेटर का प्रयोग करने की अनमति नहीं है।

भाग-क

(अंक : 20)

1. निम्नलिखित में से कौन-से कथन सत्य हैं ? अपने उत्तरों के कारण एक लघ उपपत्ति या प्रति-उदाहरण के रूप में दीजिए :
$2 \times 10=20$
(i) \mathbf{R} का प्रत्येक परिबद्ध उपसमच्चय संवत है।
(ii) कथन $p \vee q \rightarrow r$ का निषेध $(p \vee q) \wedge \sim r$ है।
(iii) प्रत्येक $n \in \mathbf{N}$ के लिए, $7^{n}+1,2$ से विभाज्य है।
(iv) अनक्रम $\left(3^{n}-2^{n}\right)_{n \in \mathbf{N}}$ वर्धमान है।
(v) श्रेणी $\sum_{n=1}^{\infty}(-1)^{n}$ अपसारी है।
(vi) प्रत्येक निरंतर ह्वासमान फलन व्यत्क्रमणीय है।
(vii) समीकरण $x^{3}-2 x+3=0$ का -2 और 1 के बीच में एक वास्तविक मल है।
(viii) एक समाकलनीय फलन के असांतत्य के परिमितानेक बिन्द होते हैं।
(ix) $f(x)=|x+5|$ द्वारा \mathbf{R} पर परिभाषित फलन f का $x=-5$ पर एक स्थानीय निम्निष्ठ है।
(x) यदि $f(0)=0$ और $f(x)=x \sin \frac{1}{x}, x \neq 0$ है, तो $f, 0$ पर संतत है।

भाग-ख (अंक : 30)
2. (क) जाँच कीजिए कि क्या समच्चय $]-5,7] \cap[-7,5[$ में 3 का कोई ε-प्रतिवेश है या नहीं। 2
(ख)एक समच्चय का कोई सीमा बिन्द होने के लिए पर्याप्त प्रतिबंध क्या हैं ? जाँच कीजिए कि समच्चय $\left\{\left. \pm \frac{1}{n} \right\rvert\, n \in \mathbf{N}\right\}$ का \mathbf{R} में कोई सीमा बिन्द है या नहीं। 3
3. (क) परिभाषा के प्रयोग से दिखाइए कि अनक्रम $\left(\frac{1}{\sqrt{n}}\right)_{n \in \mathbf{N}}$ कॉशी है।
(ख) एक ऐसे अपसारी अनक्रम का उदाहरण दीजिए जिसके दो अभिसारी उपअनक्रम हों। अपने उदाहरण के चयन की पष्टि कीजिए।
4. निम्नलिखित श्रेणियों के अभिसरण की जाँच कीजिए :5
(i) $\frac{1.2}{3^{2} \cdot 4^{2}}+\frac{3 \cdot 4}{5^{2} \cdot 6^{2}}+\frac{5 \cdot 6}{7^{2} \cdot 8^{2}}+\ldots \ldots$.
(ii) $\sum_{n=1}^{\infty} \sqrt{n^{2}+1}-\sqrt{n^{3}-1}$
5. जाँच कीजिए कि निम्नलिखित फलन \mathbf{R} पर संतत हैं या नहीं। यदि वे असंतत हैं, तो असांतत्य की प्रकति ज्ञात कीजिए :
(i) $f(x)=\left\{\begin{array}{cc}\frac{x^{2}-1}{x-1}, & \text { यदि } x \neq 1 \\ 1, & \text { यदि } x=1\end{array}\right.$
(ii) $g(x)= \begin{cases}2, & \text { यदि } x \in \mathbf{Q} \\ 4, & \text { यदि } x \notin \mathbf{Q}\end{cases}$
6. मान लीजिए $f(x)=3 x+2, x \in[0,1]$ है। मान लीजिए \mathbf{P}_{n} एक चिन्हित विभाजन है, जो अंतरालों $\mathrm{I}_{1}=\left[0, \frac{1}{n}\right], \quad \mathrm{I}_{2}=\left[\frac{1}{n}, \frac{2}{n}\right], \cdots \cdots$, $\mathrm{I}_{i}=\left[\frac{i-1}{n}, \frac{i}{n}\right], \cdots \cdots \cdots, \quad \mathrm{I}_{n}=\left[\frac{n-1}{n}, 1\right]$ से बना है, जहाँ टैग $t_{i}=\frac{i}{n}, i=1,2, \ldots \ldots \ldots, n$ द्वारा दिए गए

हैं। रीमान योगफल ज्ञात कीजिए। क्या f रीमान समाकलनीय है ? अपने उत्तर की पष्टि कीजिए।
7. वीयसस्ट्रास M -परीक्षण का प्रयोग करके, दिखाइए कि श्रेणी $\sum_{n=1}^{\infty} \frac{1}{n^{2}+x^{2}}, x \in \mathbf{R}$ एकसमानतः अभिसारी है।
(अंक: 50)
8. (क)समच्चय $\left.\bigcap_{n=1}^{\infty}\right] \frac{1}{n}, 1+\frac{1}{n}[$ का अभ्यंतर ज्ञात कीजिए।
(ख) सिद्ध कीजिए कि $a_{1}=1$ और $n>1$ के लिए $a_{n+1}=\sqrt{3 a_{n}}$ द्वारा परिभाषित अनक्रम $\left(a_{n}\right)_{n \in \mathbf{N}}$ वर्धमान है, परिबद्ध है और 3 की ओर अभिसरित होता है।
9. (क) श्रेणी :

$$
1-\frac{1}{2^{1 / 3}}+\frac{1}{3^{1 / 3}}-\frac{1}{4^{1 / 3}}+
$$

के सप्रतिबंध अभिसरण की जाँच कीजिए। क्या यह निरपेक्षतः अभिसारी है ? अपने उत्तर की पष्टि कीजिए।
(ख) सिद्ध कीजिए कि $e^{x} \sin x=1$ के किन्हों भी दो वास्तविक मलों के बीच में कम से कम एक वास्तविक मल $e^{x} \cos x+1=0$ का है। 5
10. (क) $x \in[0,1]$ और $n \in \mathbf{N}$ के लिए $f_{n}(x)=2 x+\frac{x}{n}$ परिभाषित कीजिए। अनक्रम $\left(f_{n}\right)_{n \in \mathrm{~N}}$ का सीमा फलन f ज्ञात कीजिए। क्या f संतत है ? क्या $\int_{0}^{1} f(x) d x=\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x$ है ? अपने उत्तरों की पष्टि कीजिए। 5
(ख)दिखाइए कि $\left(a_{n}\right)_{n \in \mathbf{N}}$, जहाँ $a_{n}=\frac{n}{n^{2}+2}$ है, एकदिष्ट है। क्या $\left(a_{n}\right)_{n \in \mathrm{~N}}$ कॉशी है ? क्या $\left(a_{n}\right)_{n \in \mathrm{~N}}$ अभिसारी है ? अपने उत्तरों की पष्टि कीजिए।
11. (क)कथन "दो विषम पर्णांकों का गणनफल एक विषम पर्णांक होता है।" की एक प्रत्यक्ष एवं एक अप्रत्यक्ष उपपत्ति दीजिए।
(ख) यदि $f, \mathrm{I}=[a, b]$ पर अवकलनीय है और $k, f^{\prime}(a)$ और $f^{\prime}(b)$ के बीच में कोई संख्या है, तो दिखाइए कि कम से कम एक c इस प्रकार है कि $f^{\prime}(c)=k$ है।
12. (क)मान लीजिए कि फलन f, \mathbf{R} पर $f(x)=x^{3} \sin \left(\frac{1}{x}\right), \quad$ यदि $\quad x \neq 0 \quad$ और $f(0)=0$ द्वारा परिभाषित फलन है। दिखाइए कि f^{\prime}, \mathbf{R} पर संतत है, लेकिन यह 0 पर अवकलनीय नहीं है। 5
(ख) श्रेणी $\sum_{n=1}^{\infty} \frac{x}{n(n+1)}$ के आंशिक योगफलों का अनक्रम ज्ञात कीजिए, जहाँ $x \in[0, \infty[$ है। क्या यह अनक्रम बिंदशः अभिसारी है ? क्या यह एकसमानतः अभिसारी है ? अपने उत्तरों की पष्टि कीजिए।
13. (क) $\lim _{n \rightarrow \infty} \sum_{r=1}^{3 n} \frac{n}{(3 n+r)^{2}}$ ज्ञात करने के लिए कॉशी समाकल परीक्षण का प्रयोग कीजिए। 5
(ख) निम्नलिखित श्रेणियों के अभिसरण की जाँच कीजिए : 5
(i) $\sum_{n=1}^{\infty}\left(\frac{n+3}{2 n+1}\right)^{n}$
(ii) $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{n^{2}}{n+1}$
14. (क)फलन $f(x)=x^{4}-2 x^{3}-3 x^{2}+4 x+7$ का अंतराल $[0,1]$ पर अधिकतम मान ज्ञात कीजिए।

5
(ख)जाँच कीजिए कि परिमेय संख्याओं का समच्चय एक क्षेत्र है या नहीं। 5

