No. of Printed Pages : 16 BMTC-133

BACHELOR OF SCIENCE/BACHELOR

OF ARTS

(BSCG/BAG)

Term-End Examination

December, 2021

BMTC-133 : REAL ANAYSIS

Time : 3 Hours Maximum Marks : 100

- Note : (i) The question paper has three Sections— Sections A, B and C.
 - (ii) All questions in Section A and Section B are compulsory.
 - (iii) Do any *five* questions from those given in Section C.
 - (iv) Use of calculator is not allowed.

Section—A (Marks: 20)

1. Which of the following statements are true ? Give reasons for your answers in the form of a short proof or counter-example, whichever is appropriate : $2 \times 10=20$

(i) Every bounded subset of **R** is closed.

[2]

- (ii) The negation of the statement $p \lor q \to r$ is $(p \lor q) \land \sim r$.
- (iii) $7^n + 1$ is divisible by 2 for every $n \in \mathbf{N}$.
- (iv) The sequence $(3^n 2^n)_{n \in \mathbb{N}}$ is increasing.
- (v) The series $\sum_{n=1}^{\infty} (-1)^n$ diverges.
- (vi) Every strictly decreasing function is invertible.
- (vii) The equation $x^3 2x + 3 = 0$ has a real root between -2 and 1.
- (viii) An integrable function has finitely many points of discontinuities.
- (ix) The function f defined on **R** by f(x) = |x + 5| has a local minimum at x = -5.

BMTC-133

(x) If
$$f(0) = 0$$
 and $f(x) = x \sin \frac{1}{x}$ for $x \neq 0$,

[3]

then f is continuous at 0.

Section—B (Marks: 30)

- 2. (a) Check whether the set $]-5,7] \cap [-7,5[$
 - contains any ϵ -neighbourhood of 3. 2
 - (b) What are the sufficient conditions for a set to have a limit point ? Check whether the
 - set $\left\{\pm \frac{1}{n} \mid n \in \mathbf{N}\right\}$ has any limit point

in **R**.

3. (a) Using the definition, show that the

sequence
$$\left(\frac{1}{\sqrt{n}}\right)_{n \in \mathbb{N}}$$
 is Cauchy. 3

(b) Give an example of a divergent sequence which has two convergent subsequences. Justify your choice of example. 2 4. Test the following series for convergence : 5

[4]

(i)
$$\frac{1.2}{3^2.4^2} + \frac{3.4}{5^2.6^2} + \frac{5.6}{7^2.8^2} + \dots$$

(ii) $\sum_{n=1}^{\infty} \sqrt{n^2 + 1} - \sqrt{n^3 - 1}$

5. Check whether the following functions are continuous on R. If they are discontinuous, find the nature of discontinuities. :

(i)
$$f(x) = \begin{cases} \frac{x^2 - 1}{x - 1}, & \text{if } x \neq 1 \\ 1, & \text{if } x = 1 \end{cases}$$

(ii)
$$g(x) = \begin{cases} 2, & \text{if } x \in \mathbf{Q} \\ 4, & \text{if } x \notin \mathbf{Q} \end{cases}$$

6. Let :

$$f(x) = 3x + 2, x \in [0,1].$$

Let \mathbf{P}_n be the tagged partition formed by the subintervals :

$$\mathbf{I}_1 = \begin{bmatrix} 0, \frac{1}{n} \end{bmatrix}, \ \mathbf{I}_2 = \begin{bmatrix} \frac{1}{n}, \frac{2}{n} \end{bmatrix}, \dots,$$

3

where the tags are given by :

$$t_i = \frac{i}{n}, i = 1, 2, \dots, n$$

Calculate the Riemann sums. Is *f* Riemann integrable ? Justify your answer. 6

- 7. Using the Weierstrass M-test, show that the series $\sum_{n=1}^{\infty} \frac{1}{n^2 + x^2}, x \in \mathbf{R}$ converges uniformly.
 - 3

8. (a) Find the interior of the set : 4

$$\bigcap_{n=1}^{\infty} \left] \frac{1}{n}, 1 + \frac{1}{n} \right[$$

- (b) Prove that $(a_n)_{n \in \mathbb{N}}$ defined by $a_1 = 1$ and $a_{n+1} = \sqrt{3a_n}$ for n > 1, is increasing, bounded and converges to 3. 6
- 9. (a) Test the conditional convergence of the series :

BMTC-133

$$1 - \frac{1}{2^{\frac{1}{3}}} + \frac{1}{3^{\frac{1}{3}}} - \frac{1}{4^{\frac{1}{3}}} + \dots$$

[6]

Is it absolutely convergent ? Justify your answer. 5

(b) Prove that between any two real roots of $e^x \sin x = 1$, there is at least one real root

of
$$e^x \cos x + 1 = 0$$
. 5

10. (a) For
$$x \in [0,1]$$
 and $n \in \mathbf{N}$, define

$$f_n(x) = 2x + \frac{x}{n}$$
. Find the limit function *f* of

the sequence $(f_n)_{n \in \mathbb{N}}$. Is f continuous ?

Does
$$\int_0^1 f(x) dx = \lim_{n \to \infty} \int_0^1 f_n(x) dx$$
?

Justify your answers.

$$\mathbf{5}$$

(b) Show that
$$(a_n)_{n \in \mathbf{N}}$$
, where $a_n = \frac{n}{n^2 + 2}$ is

monotone. Is $(a_n)_{n \in \mathbb{N}}$ Cauchy ? Is $(a_n)_{n \in \mathbb{N}}$

BMTC-133

11. (a) Give a direct proof and an indirect proof of the statement "The product of two odd integers is an odd integer." 5

[7]

- (b) If f is differentiable on I = [a, b] and k is a number between f'(a) and f'(b), then show that there exists at least one c such that f'(c) = k. 5
- 12.(a) Let the function f be defined on **R** by

$$f(x) = x^3 \sin\left(\frac{1}{x}\right)$$
, if $x \neq 0$ and $f(0) = 0$.

Show that f' is continuous of **R**, but it is not derivable at 0. 5

(b) Find the sequence of partial sums of the

series
$$\sum_{n=1}^{\infty} \frac{x}{n(n+1)}$$
, where $x \in [0, \infty)$

Does the sequence converge pointwise ? Does it converge uniformly ? Justify your answers. 5

[8]

$$\lim_{n \to \infty} \sum_{r=1}^{3n} \frac{n}{\left(3n+r\right)^2}$$

(b) Test the following series for convergence :

$$\mathbf{5}$$

(i)
$$\sum_{n=1}^{\infty} \left(\frac{n+3}{2n+1}\right)^n$$

(ii) $\sum_{n=1}^{\infty} \left(-1\right)^{n-1} \frac{n^2}{n+1}$

14. (a) Find the greatest value of the function :

$$f(x) = x^4 - 2x^3 - 3x^2 + 4x + 7$$

over the interval [0, 1]. 5

(b) Check whether the set of rational numbers is a field or not. 5

P. T. O.

BMTC-133

स्नातक उपाधि कार्यक्रम [बी. एस-सी. (जी)/ बी.ए. (जी)] सत्रांत परीक्षा दिसम्बर. 2021 बी.एम.टी.सी.-133 : वास्तविक विश्लेषण समय : 3 घण्टे अधिकतम अंक : 100 नोट: (i) इस प्रश्न-पत्र में तीन भाग हैं— भाग 'क', भाग 'ख' और भाग 'ग'। (ii) भाग 'क' और भाग 'ख' के सभी प्रश्न अनिवार्य हैं। (iii) भाग 'ग' से किन्हीं **पाँच** प्रश्नों के उत्तर दीजिए। (iv) कैलकलेटर का प्रयोग करने की अनमति नहीं है।

[10]

		[12]		BMTC-133
	(x) यदि	$f(0) = 0 \Im$	मौर $f(x) = x$	$ sin \frac{1}{x}, x \neq 0 $
	है, त	f,0 पर संत	ात है।	
		भाग	–ख	(अंक : 30)
2.	(क)जाँच व	जीजिए कि क्या	। समच्चय] – १	$[5,7] \cap [-7,5[$
	में 3 व	ना कोई ε−प्रलि	तेवेश है या नही	ii 2
	(ख)एक स	मच्चय का क	कोई सीमा बिन्द	होने के लिए
	पर्याप्त	प्रतिबंध क्य	। हैं ? जाँच	कोजिए कि
	समच्च	$\mathbf{a} \left\{ \pm \frac{1}{n} \mid n \in \right.$	${f \in {f N}} ig \}$ का ${f R}$	में कोई सीमा
	बिन्द है	या नहीं।		3
3.	(क)परिभाष	ा के प्रयोग	से दिखाइए	कि अनक्रम
	$\left(\frac{1}{\sqrt{n}}\right)$	कॉशी है _{n∈N}	tı.	3
	(ख)एक ए	से अपसारी	अनक्रम का उ	दाहरण दीजिए
	जिसके	दो अभिस	ारी उपअनक्रम	हों। अपने
	उदाहरा	ग के चयन की	ो पष्टि कीजिए।	2

- निम्नलिखित में से कौन-से कथन सत्य हैं ? अपने उत्तरों के कारण एक लघ उपपत्ति या प्रति-उदाहरण के रूप में दीजिए : 2×10=20
 - (i) R का प्रत्येक परिबद्ध उपसमच्चय संवत है।
 - (ii) कथन $p \lor q \to r$ का निषेध $(p \lor q) \land \sim r$ है।
 - (iii) प्रत्येक $n \in \mathbf{N}$ के लिए, $7^n + 1, 2$ से विभाज्य है।
 - (iv) अनक्रम $(3^n 2^n)_{n \in \mathbf{N}}$ वर्धमान है।
 - (v) श्रेणी $\sum_{n=1}^{\infty} (-1)^n$ अपसारी है।
 - (vi) प्रत्येक निरंतर ह्रासमान फलन व्यत्क्रमणीय है।
 - (vii) समीकरण x³ − 2x + 3 = 0 का −2 और 1 के बीच में एक वास्तविक मल है।
 - (viii) एक समाकलनीय फलन के असांतत्य के परिमितानेक बिन्द होते हैं।
 - (ix) f(x) = |x + 5| द्वारा **R** पर परिभाषित फलन f का x = -5 पर एक स्थानीय निम्निष्ठ है।

[14] BMTC-133
हैं। रीमान योगफल ज्ञात कीजिए। क्या
$$f$$
 रीमान
समाकलनीय है ? अपने उत्तर की पष्टि कीजिए। 6
7. वीयरस्ट्रास M-परीक्षण का प्रयोग करके, दिखाइए कि
श्रेणी $\sum_{n=1}^{\infty} \frac{1}{n^2 + x^2}, x \in \mathbf{R}$ एकसमानत: अभिसारी है।
भाग—ग (अंक : 50)
8. (क) समच्चय $\bigcap_{n=1}^{\infty}]\frac{1}{n}, 1 + \frac{1}{n} [$ का अभ्यंतर ज्ञात
कीजिए। 4
(ख) सिद्ध कीजिए कि $a_1 = 1$ और $n > 1$ के लिए
 $a_{n+1} = \sqrt{3a_n}$ द्वारा परिभाषित अनक्रम $(a_n)_{n\in \mathbf{N}}$
वर्धमान है, परिबद्ध है और 3 की ओर अभिसरित
होता है। 6
9. (क) श्रेणी :
 $1 - \frac{1}{2^{\frac{1}{3}}} + \frac{1}{3^{\frac{1}{3}}} - \frac{1}{4^{\frac{1}{3}}} + \dots$
के सप्रतिबंध अभिसरण की जाँच कीजिए। क्या यह

के सप्रतिबंध अभिसरण की जाँच कीजिए। क्या यह निरपेक्षत: अभिसारी है ? अपने उत्तर की पष्टि कीजिए। 5

BMTC-133

4. निम्नलिखित श्रेणियों के अभिसरण की जाँच कीजिए :5

[13]

(i)
$$\frac{1.2}{3^2.4^2} + \frac{3.4}{5^2.6^2} + \frac{5.6}{7^2.8^2} + \dots$$

(ii) $\sum_{n=1}^{\infty} \sqrt{n^2 + 1} - \sqrt{n^3 - 1}$

 जाँच कीजिए कि निम्नलिखित फलन R पर संतत हैं या नहीं। यदि वे असंतत हैं, तो असांतत्य की प्रकति ज्ञात कीजिए :

(i)
$$f(x) = \begin{cases} \frac{x^2 - 1}{x - 1}, & \text{ulf } x \neq 1 \\ 1 & \text{,} & \text{ulf } x = 1 \end{cases}$$

(ii)
$$g(x) = \begin{cases} 2, & \text{ulf } x \in \mathbf{Q} \\ 4, & \text{ulf } x \notin \mathbf{Q} \end{cases}$$

6. मान लीजिए $f(x) = 3x + 2, x \in [0,1]$ है। मान लीजिए \mathbf{P}_n एक चिन्हित विभाजन है, जो अंतरालों $\mathbf{I}_1 = \begin{bmatrix} 0, \frac{1}{n} \end{bmatrix},$ $\mathbf{I}_2 = \begin{bmatrix} \frac{1}{n}, \frac{2}{n} \end{bmatrix},$,....,, $\mathbf{I}_i = \begin{bmatrix} \frac{i-1}{n}, \frac{i}{n} \end{bmatrix},$,..., $\mathbf{I}_n = \begin{bmatrix} \frac{n-1}{n}, 1 \end{bmatrix}$ से बना है, जहाँ टैंग $t_i = \frac{i}{n}, i = 1, 2, ..., n$ द्वारा दिए गए

[16] BMTC-133
(ख)यदि
$$f, I = [a,b]$$
 पर अवकलनीय है और
 $k, f'(a)$ और $f'(b)$ के बीच में कोई संख्या है,
तो दिखाइए कि कम से कम एक c इस प्रकार है
कि $f'(c) = k$ है।
12. (क)मान लीजिए कि फलन f, \mathbf{R} पर
 $f(x) = x^3 \sin(\frac{1}{x}),$ यदि $x \neq 0$ और
 $f(0) = 0$ द्वारा परिभाषित फलन है। दिखाइए कि
 f', \mathbf{R} पर संतत है, लेकिन यह 0 पर अवकलनीय
नहीं है।
5
(ख)श्रेणी $\sum_{n=1}^{\infty} \frac{x}{n(n+1)}$ के आंशिक योगफलों का
अनक्रम जात कीजिए, जहाँ $x \in [0, \infty[$ है। क्या
यह अनक्रम बिंदश: अभिसारी है ? क्या यह
एकसमानत: अभिसारी है ? अपने उत्तरों की पांट
कीजिए। 5

[15] BMTC-133
(ख)सिद्ध कीजिए कि
$$e^x \sin x = 1$$
 के किन्हीं भी **दो**
वास्तविक मलों के बीच में कम से कम एक
वास्तविक मल $e^x \cos x + 1 = 0$ का है। 5
10. (क) $x \in [0,1]$ और $n \in \mathbb{N}$ के लिए
 $f_n(x) = 2x + \frac{x}{n}$ परिभाषित कीजिए। अनक्रम
 $(f_n)_{n \in \mathbb{N}}$ का सीमा फलन f जात कीजिए।
क्या f संतत है ? क्या
 $\int_0^1 f(x) dx = \lim_{n \to \infty} \int_0^1 f_n(x) dx$ है ? अपने
उत्तरों की पष्टि कीजिए। 5
(ख)दिखाइए कि $(a_n)_{n \in \mathbb{N}}$, जहाँ $a_n = \frac{n}{n^2 + 2}$ है,
एकदिष्ट है। क्या $(a_n)_{n \in \mathbb{N}}$ कॉशी है ? क्या
 $(a_n)_{n \in \mathbb{N}}$ अभिसारी है ? अपने उत्तरों की पष्टि
कीजिए। 5

पर्णांक होता है।" की एक प्रत्यक्ष एवं एक

अप्रत्यक्ष उपपत्ति दीजिए।

P. T. O.

5

[17]BMTC-13313. (क)
$$\lim_{n \to \infty} \sum_{r=1}^{3n} \frac{n}{(3n+r)^2}$$
 ज्ञात करने के लिए कॉशीसमाकल परीक्षण का प्रयोग कीजिए।5(ख)निम्नलिखित श्रेणियों के अभिसरण की जाँच
कीजिए :5

(i)
$$\sum_{n=1}^{\infty} \left(\frac{n+3}{2n+1}\right)^n$$

(ii) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n^2}{n+1}$

14. (क)फलन
$$f(x) = x^4 - 2x^3 - 3x^2 + 4x + 7$$
 का
अंतराल $[0,1]$ पर अधिकतम मान ज्ञात कीजिए।

 $\mathbf{5}$

(ख)जाँच कीजिए कि परिमेय संख्याओं का समच्चय
 एक क्षेत्र है या नहीं।

BMTC-133