POST GRADUATE DIPLOMA IN APPLIED STATISTICS (PGDAST)

 Term-End Examination

 Term-End Examination}

February, 2021

MST-002 : DESCRIPTIVE STATISTICS

Time : 3 hours
Maximum Marks : 50
Note:
(i) Question no. 1 is compulsory.
(ii) Attempt any four questions from the remaining questions no. 2 to 7.
(ii) Use of scientific (non-programmable) calculator is allowed.
(iii) Use of Formulae and Statistical Tables Booklet for PGDAST is allowed.
(iv) Symbols have their usual meanings.

1. State whether the following statements are True or False. Give reasons in support of your answers.
(a) If the arithmetic mean of the numbers $3 \cdot 2$, $5 \cdot 8,7.9$ and 4.5 with their corresponding frequencies $\mathrm{Y},(\mathrm{Y}+2),(\mathrm{Y}-3)$ and $\mathrm{Y}+6$ is $4 \cdot 876$, then the value of Y is 5 .
(b) The sum of squares of deviations for 10 observations taken from their mean 50 is 250 . The coefficient of variation is 10%.
(c) If the sum of the product of deviations of X and Y values from their respective means is zero, then the $\mathrm{r}(\mathrm{x}, \mathrm{y})$ will be -1 .
(d) If $b_{x y}=-\frac{4}{3}$ and $b_{y x}=-\frac{1}{12}$, the value of r will be $+\frac{1}{3}$.
(e) The data is consistent if $\mathrm{N}=1000,(\mathrm{~A})=600$ $(B)=500$ and $(A B)=50$.
2. (a) The following is the distribution of age of 80 workers :

Age Group	No. of Workers
$20-25$	5
$25-30$	7
$30-35$	10
$35-40$	18
$40-45$	15
$45-50$	12
$50-55$	7
$55-60$	6

Find Quartile deviation.
(b) The number of runs scored by two batsmen in consecutive eight matches are given below :

Batsman A :	27	16	39	45	101	80	40	52
Batsman B :	0	100	80	5	60	40	10	121

Find who is a better run scorer. Also find
which of the two batsmen is more consistent
in scoring.
3. With 10 observations, each on two variables X and Y, the following data were observed :

$$
\overline{\mathrm{X}}=12, \sigma_{\mathrm{x}}=3, \overline{\mathrm{Y}}=15, \sigma_{\mathrm{y}}=4 \text { and } \mathrm{r}=0.5
$$

However, on subsequent verification, it was found that one value of $X(=15)$ and one value of $\mathrm{Y}(=13)$ were wrongly taken as 16 and 18 respectively. Find the correct value of correlation coefficient.
4. Find the multiple linear regression equation of X_{1} on X_{2} and X_{3} from the data relating to three variables given below :

$\mathrm{X}_{1}:$	4	6	7	9	13	15
$\mathrm{X}_{2}:$	15	12	8	6	4	3
$\mathrm{X}_{3}:$	30	24	20	14	10	4

Also estimate the best value of X_{1} for $X_{2}=4$ and $\mathrm{X}_{3}=10$.
5. 800 candidates comprising both boys and girls appeared in an examination. The boys outnumbered the girls by 15% of the total. The number of candidates who passed exceeded the number failed by 480 . Equal number of boys and girls failed in the examination. Prepare a 2×2 table and find the coefficient of association.
6. (a) The mean annual salary of all employees in a company is ₹ 25,000 . The mean salary of male and female employees is ₹ 27,000 and $₹ 17,000$ respectively. Find the percentage of males and females employed by the company.
(b) For a bivariate data, the two regression equations are $8 \mathrm{Y}=6 \mathrm{X}$ and $\mathrm{Y}=3 \mathrm{X}$. Find (i) means of X and Y , (ii) $\mathrm{r}(\mathrm{X}, \mathrm{Y})$, and (iii) value of σ_{y} if value of $\sigma_{x}=4$.
7. (a) Calculate the coefficient of rank correlation for the following data :

$\mathrm{X}:$	80	78	75	75	68	57	60	59
$\mathrm{Y}:$	110	111	114	114	114	116	115	117

(b) Check whether A and B are independent, positively associated or negatively associated in case of the following data :
$(A)=490,(A B)=294,(\alpha)=570$ and $(\alpha \beta)=380$.

