MCA (Revised)

Term-End Examination
February, 2021

MCSE-004 : NUMERICAL AND STATISTICAL COMPUTING

Time : 3 hours
Maximum Marks : 100
Note: Question no. 1 is compulsory. Attempt any three questions from the rest. Use of calculator is allowed.

1. (a) What is precision ? How does precision differ from accuracy ? Give suitable example in support of your answer.
(b) Estimate the missing term in the following data, using forward differences :

x	1	2	3	4	5
$\mathrm{f}(\mathrm{x})$	3	7	$?$	21	31

(c) Evaluate the integral $I=\int_{1}^{4} x^{2} d x$, using

Simpson's $\frac{1}{3}$ rule with $h=0 \cdot 5$.
(d) If a bank receives on an average $\lambda=6 \mathrm{bad}$ cheques per day, what is the probability that it will receive 4 bad cheques on any given day ? λ denotes the average arrival rate per day.
(e) Solve the following system of linear equations using the Gauss Elimination method:

$$
\begin{aligned}
& 2 x+y+z=10 \\
& 3 x+2 y+3 z=18 \\
& x+4 y+9 z=16
\end{aligned}
$$

(f) Determine the constants a and b by the method of least squares such that $y=a e^{b x}$ fits the following data :

x	y
2	$4 \cdot 077$
4	$11 \cdot 084$
6	$30 \cdot 128$
8	$81 \cdot 897$
10	$222 \cdot 62$

(g) Find the Lagrange's interpolating polynomial of degree 2, approximating the function $\mathrm{y}=\ln \mathrm{x}$. Hence determine the value of $\ln 2 \cdot 7$ where $\mathrm{x}=2,2 \cdot 5,3$.
(h) Explain Bisection method. Apply the method to determine the roots of the equation. Perform 3 iterations.

$$
f(x)=0 \cdot 5 e^{x}-5 x+2
$$

2. (a) What is "Goodness of fit test"? What is the utility of this test? Consider the following data and perform "Goodness of fit test" over it :

x	y
100	45
110	51
120	54
130	61
140	66
150	70
160	74
170	78
180	85
190	89

Now comment, whether the data is fitted well or not.
(b) Use Runge-Kutta method to solve the initial value problem $y^{\prime}=(\mathrm{t}-\mathrm{y}) / 2$ on $[0,0 \cdot 2]$ with $\mathrm{y}(0)=1$. Compare the solution when $\mathrm{h}=0 \cdot 2$ and $\mathrm{h}=0 \cdot 1$.
3. (a) Three bags of same type have the following balls :

Bag 1:2 black 1 white
Bag 2: 1 black 2 white
Bag 3 : 2 black 2 white
Randomly one bag is selected and one ball is drawn. It turns out to be white. What is the probability of drawing a white ball again provided the first ball is not returned to the bag?
(b) What are residual plots ? What is the utility of residual plots?
(c) Show that the moment generating function of a random variable X which is Chi-square distributed with v degrees of freedom is

$$
\mathrm{M}(\mathrm{t})=(1-2 \mathrm{t})^{-v / 2}
$$

4. (a) Find an approximate value of the root of the equation $x^{3}+x-1=0$, near $x=1$. Using Regula-Falsi method, perform two iterations.
(b) Solve the system of equations by using Gauss-Seidel iteration method, perform two iterations. Use $(0,0,0)$ as initial approximation.

$$
\begin{aligned}
& 8 x-3 y+2 z=20 \\
& 6 x+3 y+12 z=35 \\
& 4 x+11 y-z=33
\end{aligned}
$$

(c) The following data is given for marks in subject A and B of a certain examination :

	Subject A	Subject B
Mean Marks	36	85
Standard deviation	11	8

Coefficient of correlation between A and $B= \pm 0 \cdot 66$.
(i) Determine the two equations of regression.
(ii) Calculate the expected marks in A corresponding to 75 .
5. (a) How does error measure accuracy? Discuss the different types of errors used to determine the accuracy.
(b) Calculate the value of the integral $I=\int_{4}^{5 \cdot 2} \log x d x \quad$ using Weddle's rule.
Use $h=0 \cdot 6$.
(c) Write short notes on any two of the following :
(i) Chi-square distribution
(ii) Acceptance-Rejection method
(iii) Newton-Cotes formula

