MCA (Revised) / BCA (Revised) Term-End Examination February, 2021

MCS-013: DISCRETE MATHEMATICS

Time: 2 hours Maximum Marks: 50

Note: Question no. 1 is compulsory. Answer any three questions from the rest.

- 1. (a) Show using truth table whether (p \(\Lambda \) q \(\Lambda \) r) and (p \(\V \) r) are equivalent or not.
 - (b) Using Mathematical Induction, prove that : $1+2+3+...+n=\frac{n(n+1)}{2}\,. \hspace{1.5cm} 4$
 - (c) Prove that if A is a set with n elements, then $|P(A)| = 2^n$.
 - (d) If there are 7 men and 5 women, how many circular arrangements are possible in which women do not sit adjacent to each other?

3

(e) Find Boolean expression for the following logic circuit:

3

4

4

2

- (f) If $f: R \to R$ be a function given by $f(x) = x^3 2$, find whether f^{-1} exists or not. If f^{-1} exists, find it.
- 2. (a) How many words can be formed using the letters of the word "DEPARTMENT", if each letter must be used at most once?
 - (b) Give geometric representation for $\{1, 3\} \times \{-2, 3\}.$
 - (c) Show that $(p \rightarrow q) \rightarrow q = p \lor q$.
 - (d) Find the number of ways to distribute
 20 distinct objects into 10 distinct boxes
 with at least 4 boxes remaining empty.

3.	(a)	Draw	Venn	diagrams	for	the	followin	
		expressions:						3
		$(i) \qquad A \cup B \cup C$						
		(ii) $A \cap B \cup C$						
		(iii)	$A \cap B$	\cap C				
	(b)	Draw logic circuit for the following Boolea						ın
		expres	pression:					
			$(X_1 \land$	$X_2') \vee (X_1')$	Λ X ₂	(')		
	(c)	Write	the	following	state	ment	s in th	ie
		symbolic form:						2
		(i)	Every	thing is con	rrect.			
		(ii)	All bir	ds can not	fly.			
	(d)	Explain Principle of Duality with the help						lp
		of an e	exampl	e .				3
4.	(a)	Show that $\sqrt{11}$ is irrational.						4
	(b)	What is an indirect proof? Explain with the						ıe
		help of an example.						3
	(c)	Explain De Morgan's Laws with the help of						of
								3
5.	(a)	In a ten-question true-false exam, a student						$_{ m nt}$
	must achieve five correct answers to p						to pass.	If
		he selects his answers randomly, what is						is
		the pro	obabilit	y that he w	vill pa	ass?		3
MCS-013		3 P.1					P.T.O.	

(b) In how many ways can an employer distribute 50 twenty-rupee notes among 5 employees so that each gets at least one note?

2

3

- (c) Show that in any group of 30 people, you can always find 5 people who were born on the same day of the week.
- (d) Draw truth table for :

$$(p \rightarrow q) \rightarrow p$$