No. of Printed Pages: 4

MASTER OF COMPUTER APPLICATIONS (MCA) (REVISED)

Term-End Examination December, 2020

MCS-041: OPERATING SYSTEMS

Time: 3 Hours Maximum Marks: 100

Weightage: 75%

Note: (i) Question **No.** 1 is compulsory.

(ii) Attempt any **three** questions from the rest.

1. (a) For the following processes and processing time:

Processes	Processing Time
P1	1
P2	5
Р3	4
P4	4
P5	6

Lot-II P. T. O.

Draw Gantt charts showing the execution of these processes for:

10

- (i) FCFS
- (ii) SJF
- (iii) Round Robin Scheduling (Quantum = 1) Also calculate the waiting time, average waiting time, turnaround time and average turnaround time for the processes for the above scheduling algorithms.

(Note: All the processes arrived at the same time).

(b) A system contains 10 units of resource R1.

The resource requirement of 3 user processes P1, P2, P3 can be summarized as:

	P1	P2	Р3
Max. Requirement	7	3	5
Current Allocation	3	2	3

Is the current allocation state feasible and safe? Apply Banker's algorithm to check it. If a new request of (2, 1, 0) arises, check whether it will be granted or not.

2.

3.

4.

(c)	Explain the Bell and La Padula model
	Also explain the few components of
	information flow model. 10
(d)	Discuss the implementation issues and
	considerations involved in processing and
	memory management in multiprocessor
	operating system. 10
(a)	Explain demand paging with the help of
	suitable diagrams. 5
(b)	What is Belady's anomaly? In which page
	replacement algorithm this anomaly
	occurs? Explain with an example. 5
(c)	Give a problem statement and a solution
	for dining philosopher's problem. 10
(a)	What is Thrashing? Explain the working
	set model to avoid the thrashing.
(b)	Explain the following security models: 10
	(i) Access Matrix Model
	(ii) Rule Based Access Control
(a)	Explain the memory management of
	Windows 2000 O/S. 10
(b)	Explain Lamport-Bakery's algorithm in a

distributed O/S environment.

10

[4] MCS-041

5. Write short notes on any four of the following: 5 each

- (a) Resource Allocation Graph
- (b) Spooling
- (c) Real time O/S
- (d) Translation Look-Aside Buffer (TLB)
- (e) Design issues in Distributed Systems

MCS-041 4,140