MASTER IN COMPUTER APPLICATION (MCA)

 Term-End Examination

 Term-End Examination
 December, 2020

MCS-033 : ADVANCED DISCRETE
MATHEMATICS
Time : 2 Hours
Maximum Marks : 50

Note: (i) Question No. 1 is compulsory.
(ii) Answer any three questions from the rest.

1. (a) Solve the following recurrence relation: 5

$$
t_{n}-5 t_{n-1}+6 t_{n-2}=0 ;
$$

for $n>1$ such that $t_{0}=0, t_{1}=1$.
(b) Find the generating function for the following sequence :

$$
1,3,3,1,0,0,0,0
$$

(c) Determine and explain whether the given pair of graphs is isomorphic. 3

(d) Determine whether the given graph has a Euler circuit :

(e) For the following graph, determine whether Dirac's theorem can be used to
show that the graph has a Hamiltonian circuit or not?

(f) Determine whether the given graph is planar. If so, draw it so that not two edges cross each other.

2. (a) Solve the following recurrence relation:

$$
\begin{aligned}
& t_{n}-7 t_{n-1}+15 t_{n-2}-9 t_{n-3}=0 \\
& \text { for } n>2 \text {; with } t_{0}=0, t_{1}=1 \text { and } t_{1}=2 .
\end{aligned}
$$

P. T. O.
(b) Is the following graph bipartite? Explain :

(c) Find the chromatic number of K_{4}.
3. (a) Solve the following recurrence using substitution method :

$$
t_{n}=2 t_{n-1}+1 ;
$$

for $n>1$ with $t_{1}=1$.
(b) Prove that a connected graph G with two or more vertices is edge traceable if and only if it has exactly two vertices of odd degree.
4. (a) Determine whether the following graph has a Hamiltonian circuit or Hamiltonian path. 2

(b) Consider the following two degree sequence of any graph. Determine, for which sequence graph is possible, if not explain why? 2
(i) $(3,2,2,2,1)$
(ii) $(3,2,2,2,1,1)$
(c) Find the generating function for finite sequence :

$$
2,2,2,2,2,2
$$

(d) Draw a 5 -regular graph on 10 vertices. 3
5. (a) Show that if $\mathrm{G}_{1}, \mathrm{G}_{2}, \ldots \ldots, \mathrm{G}_{n}$ are bipartite,

$$
\text { then } \bigcup_{i=1}^{n} \mathrm{G} \text { is also bipartite. }
$$

(b) Find linear/non-linear, homogeneous/nonhomogeneous, constant coefficients/noncoefficients and degree of the following recurrence relation :
(i) $\quad a_{n}=a_{n-1}+2^{n-1}$
(ii) $a_{n}=n a_{n-1}+n^{2} a_{n-2}+a_{n-1} a_{n-3}$
(iii) $a_{n}=a_{n-1}+a_{n-2}+\ldots . .+a_{0}$
(c) By using Euler's formula, determine whether the following graph is planar or not?

