BACHELOR OF COMPUTER APPLICATIONS (BCA)

Term-End Examination

December, 2020

CS-73 : THEORY OF COMPUTER SCIENCE

Time: 3 Hours
Maximum Marks : 75
Note: Question No. 1 is compulsory. Attempt any three questions from the rest.

1. (a) Consider the DFA:

What does it accept?
(b) Explain the application of regular expression in lexical analysis. 3
(c) Write the regular expression over alphabet set $\Sigma=\{a, b\}$ which contain $a b$ as a substring.
(d) Define Context Free Grammar. Find the language accepted by the grammar: 5

$$
\begin{aligned}
& \mathrm{S} \rightarrow a \mathrm{~S} \\
& \mathrm{~S} \rightarrow \leftarrow
\end{aligned}
$$

(e) Prove that the class of regular language is closed under set difference.
(f) What is the difference between DFA and NDFA?
(g) Design the NFA for language :

$$
\mathrm{L}=\left(a a^{*}(a+b)\right)
$$

(h) Explain Non-deterministic TM with the help of an example.
2. (a) Find the regular expression for:

(b) Construct the \in NFA for the regular expression :

$$
(0+1)^{*} 1
$$

(c) Write the CFG for the language :

$$
\begin{gathered}
\mathrm{L}=a^{n} b^{m+n} c^{n} \\
m, n \geq 0
\end{gathered}
$$

3. (a) Construct a PDA that accepts the following language :

$$
\mathrm{L}=\left\{a^{3} b^{n} c^{n} n \geq 0\right\}
$$

(b) Prove that:

$$
\mathrm{L}=\left\{a^{n} b^{n} c^{n} n \geq 1\right\}
$$

is not a context free language.
(c) Design a TM that copies string of 1's more precisely. Find the MIC that perform the following computations :
$q_{o} w \vdash^{*} q_{f} w w$, for any $w \in\left\{1^{+}\right\}$.
4. (a) For two any recursive languages L_{1} and L_{2} show that $\mathrm{L}_{1} \cup \mathrm{~L}_{2}$ is also recursive. 5
(b) Show that the function is primitive recursive :

$$
\begin{aligned}
f(x, y) & =x & & \text { if } x=y \\
& =0 & & \text { if } x \neq y
\end{aligned}
$$

(c) Define NP head problems. Show that clique problem is NP complete problem. 5
5. (a) Prove that halting problem of TM is unsolvable. 5
(b) Define the following :
(i) Post Correspondence Problem
(ii) BNF Notation
(c) Find the dominant term having the steepest increases in n and specify the lowest Big-Oh complexity : 5

$$
500 n+100 n^{1.5}+50 n \log _{10} n
$$

