No. of Printed Pages : 4

BACHELOR OF COMPUTER APPLICATIONS (BCA) (PRE-REVISED) Term-End Examination December, 2020

CS-71 : COMPUTER ORIENTED NUMERICAL TECHNIQUES

Time : 3 Hours Maximum Marks : 75

 Note: Question No. 1 is compulsory. Attempt any three questions from question nos. 2 to 5.
 Use of scientific calculator is permitted.

1. (a) What is Generated Error ? How does generated error differ from propagated error ? Show that $a (b - c) \neq ab - ac$ where, 6

 $a = 0.5555 \times 10^{1}$ $b = 0.4545 \times 10^{1}$ and $c = 0.4535 \times 10^{1}$

(b) Solve the following system of linear equations using Gauss-Elimination method with partial pivoting :

$$X_{1} + X_{2} + X_{3} = 3$$
$$4X_{1} + 3X_{2} + 4X_{3} = 8$$
$$9X_{1} + 3X_{2} + 4X_{3} = 7$$

(c) Determine the missing term in the following data using forward differences : 6

X	<i>f</i> (X)
1	3
2	7
3	?
4	21
5	31

- (d) Evaluate the integral $\int_{1}^{4} x^{2} dx$ using Simpson's $\frac{1}{3}$ rule with h = 0.5. 6
- (e) Find the approximate value of the root of the equation $x^3 + x - 1 = 0$, near x = 1, using Regula-Falsi method (only two iterations). 6

2. (a) Find the Lagrange's interpolating polynomial of degree 2, by approximating the function $y = \ln x$. Hence determine the value of ln 2.7. Also find the error : 7

X	$Y = \ln X$
2	0.69315
2.5	0.91629
3.0	1.09861

- (b) Solve the initial value problem u' = -2tu² with u(0) = 1 and h = 0.2 on the interval [0, 1], using fourth order classical Runge-Kutta method.
- 3. (a) Solve the following system of linear equations using Gauss-Seidel iteration method, perform two iterations.

$$8x - 3y + 2z = 20$$

$$6x + 3y + 12z = 35$$

$$4x + 11y - z = 33$$

(b) Solve the following system of linear equations by Jacobi method. Determine the result for two approximations :

$$3x + 4y + 15z = 54.8$$
$$x + 12y + 3z = 39.66$$
$$10x + y - 2z = 7.74$$

4. (a) Evaluate the integral :

$$\mathbf{I} = \int_0^1 \frac{dx}{1+x}$$

by using composite trapezoidal rule with 2 and 4 subintervals.

- (b) Determine the root of the equation $x^3 - 2x - 5 = 0$ by using Newton-Raphson's method. 7
- 5. (a) Determine the value of y when x = 0.1. Given that y (0) = 1 and $y' = x^2 + y$. Use Euler's method. 8
 - (b) Find root of the equation : 7

 $f(x) = 0.5e^x - 5x + 2$

using Secant method.

8