BACHELOR OF COMPUTER APPLICATIONS (BCA) (PRE-REVISED)
 Term-End Examination
 December, 2020

 CS-71 : COMPUTER ORIENTED NUMERICAL

 CS-71 : COMPUTER ORIENTED NUMERICAL TECHNIQUES

 TECHNIQUES}

Time : 3 Hours
Maximum Marks : 75

Note : Question No. 1 is compulsory. Attempt any three questions from question nos. 2 to 5. Use of scientific calculator is permitted.

1. (a) What is Generated Error ? How does generated error differ from propagated error ? Show that $a(b-c) \neq a b-a c$ where, 6

$$
\begin{aligned}
a & =0.5555 \times 10^{1} \\
b & =0.4545 \times 10^{1} \\
\text { and } \quad c & =0.4535 \times 10^{1}
\end{aligned}
$$

(b) Solve the following system of linear equations using Gauss-Elimination method with partial pivoting :

$$
\begin{array}{r}
\mathrm{X}_{1}+\mathrm{X}_{2}+\mathrm{X}_{3}=3 \\
4 \mathrm{X}_{1}+3 \mathrm{X}_{2}+4 \mathrm{X}_{3}=8 \\
9 \mathrm{X}_{1}+3 \mathrm{X}_{2}+4 \mathrm{X}_{3}=7
\end{array}
$$

(c) Determine the missing term in the following data using forward differences : 6

X	$f(\mathrm{X})$
1	3
2	7
3	$?$
4	21
5	31

(d) Evaluate the integral $\int_{1}^{4} x^{2} d x$ using Simpson's $\frac{1}{3}$ rule with $h=0.5$.
(e) Find the approximate value of the root of the equation $x^{3}+x-1=0$, near $x=1$, using Regula-Falsi method (only two iterations).
2. (a) Find the Lagrange's interpolating polynomial of degree 2 , by approximating the function $y=\ln x$. Hence determine the value of $\ln 2.7$. Also find the error : 7

X	$\mathrm{Y}=\ln \mathrm{X}$
2	0.69315
2.5	0.91629
3.0	1.09861

(b) Solve the initial value problem $u^{\prime}=-2 t u^{2}$ with $u(0)=1$ and $h=0.2$ on the interval [0,1], using fourth order classical RungeKutta method.
3. (a) Solve the following system of linear equations using Gauss-Seidel iteration method, perform two iterations.

$$
\begin{array}{r}
8 x-3 y+2 z=20 \\
6 x+3 y+12 z=35 \\
4 x+11 y-z=33
\end{array}
$$

(b) Solve the following system of linear equations by Jacobi method. Determine the result for two approximations :

$$
\begin{aligned}
3 x+4 y+15 z & =54.8 \\
x+12 y+3 z & =39.66 \\
10 x+y-2 z & =7.74
\end{aligned}
$$

4. (a) Evaluate the integral :

$$
\mathrm{I}=\int_{0}^{1} \frac{d x}{1+x}
$$

by using composite trapezoidal rule with 2 and 4 subintervals.
(b) Determine the root of the equation $x^{3}-2 x-5=0 \quad$ by using NewtonRaphson's method.
5. (a) Determine the value of y when $x=0.1$. Given that $y(0)=1$ and $y^{\prime}=x^{2}+y$. Use Euler's method. 8
(b) Find root of the equation: 7

$$
f(x)=0.5 e^{x}-5 x+2
$$

using Secant method.

