BACHELOR OF COMPUTER APPLICATIONS (B. C. A.) (PRE-REVISED)
 Term-End Examination
 December, 2020

CS-60 : FOUNDATION COURSE IN MATHEMATICS IN COMPUTING

Note: (i) Question number 1 is compulsory.
(ii) Attempt any three questions from Question No. 2 to 6.
(iii) Use of calculator is permitted.

1. Solve the following :
$15 \times 3=45$
(a) Find the centre and radius of sphere:

$$
x^{2}+y^{2}+z^{2}-2 x-4 y-6 z+5=0 .
$$

(b) Find $\frac{d y}{d x}$, when $x=a t^{2}$ and $y=2 a t$.
(c) Solve the following system using Cramer's rule :

$$
\begin{gathered}
x-2 y=4 \\
2 x+3 y=-13
\end{gathered}
$$

(d) Solve the following equations graphically :

$$
\begin{gathered}
x^{2}+y^{2}=4 \\
x+y=2
\end{gathered}
$$

(e) Determine the equation of a line passing through the points $(3,4)$ and $(2,-1)$.
(f) Find the equation of a line passing through the point $(2,2)$ and sum of the intercepts on the axis is 9 .
(g) Evaluate :

$$
\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}
$$

(h) For any real x, find the minimum value of

$$
\frac{x^{3}}{3}-x^{2}+x+2
$$

(i) Which of the following collections are sets :
(i) All the days of a week
(ii) All the factors of 30
(iii) Only the good students of a class
(j) Show that the function ' f ' defined by $f(x)=\sin 2 x$ is periodic. Also, find its period.
(k) Check the continuity of the function f defined by $f(x)=|x-1|$ at $x=1$.
(l) Write the condition, when the matrix $\left[\begin{array}{ll}a & c \\ b & d\end{array}\right]$ is singular.
(m) Transform the quadratic equation :

$$
3 x^{2}+y^{2}+15 x-10 y+5=0
$$

to parallel axes through the point $(1,1)$.
(n) Determine the equation of the sphere on the join of $(2,3,5)$ and $(4,9,-3)$ as diameter.
(o) If $x^{y}=e^{x-y}$; prove that:

$$
\frac{d y}{d x}=\frac{\log x}{(1+\log x)^{2}} .
$$

2. (a) If the roots of $p x^{2}+5 x+r=0$ are 2 and $\frac{1}{2}$, then show that $p=r$.
(b) Find $\frac{d y}{d x}$, if $y=e^{\cos x}$. 3
(c) Obtain the equation of a circle which passes through the intersection of the lines $3 x-2 y-1=0$ and $4 x+y-27=0$ and whose centre is the point $(2,-3)$. 3
3. (a) Find the focus, vertex, length of latus rectum and equation of the directrix of the parabola : 4

$$
y^{2}=-4 x
$$

(b) Find the equation of the ellipse whose foci are $(\pm 2,0)$ and eccentricity is $=\frac{1}{2}$. 3
(c) Express:

$$
\frac{(6+i)(2-i)}{(4+3 i)(1-2 i)}
$$ in the form $a+i b$.

4. (a) Evaluate :

$$
\int_{0}^{1} \frac{\tan ^{-1} x}{1+x^{2}} d x
$$

(b) For any two sets A and B, prove that:

$$
(\mathrm{A} \cup \mathrm{~B})^{\mathrm{C}}=\mathrm{A}^{\mathrm{c}} \cap \mathrm{~B}^{\mathrm{C}} .
$$

(c) Find the length of the perpendicular on the line $x+\sqrt{3} y+7=0$, from the point (0,0).
5. (a) Find the points of intersection of the parabola $y^{2}=4 x+8$ and the circle $x^{2}+y^{2}=4$. 4
(b) Evaluate :

$$
\int_{0}^{\pi / 2} \cos ^{2} x d x
$$

(c) Find the area under the given curves and given lines:

$$
y=x^{4}, x=1, x=5 \text { and } x \text {-axis. }
$$

6. (a) The vertex and the focus of a parabola are respectively $(0,4)$ and $(0,2)$. Find out the equation of the parabola. 3
(b) The equation of the ellipse is: 4
P. T. O.

$$
\frac{x^{2}}{5}+\frac{y^{2}}{4}=1
$$

Determine the distance between the foci of the ellipse.
(c) Find out the coordinates of the point P which divides the line joining of $\mathrm{A}(5,-2)$ and $B(9,6)$ in the ratio of $3: 1$. 3

