BACHELOR OF COMPUTER APPLICATIONS (BCA) (REVISED)

Term-End Examination December, 2020

BCS-040: STATISTICAL TECHNIQUES

Time: 2 Hours Maximum Marks: 50

Note: (i) Attempt both Sections i.e. Section A and Section B.

- (ii) Attempt any four questions from Section A.
- (iii) Attempt any **three** questions from Section B.
- (iv) Use of non-scientific calculator is allowed.

Section—A

1. Calculate the correlation coefficient and slope of the regression line Y on X, by using the data given below:

$$\Sigma x = 15$$

$$\Sigma y = -6$$

Lot-II P. T. O.

$$\Sigma xy = 50$$

$$\Sigma x^2 = 61$$

$$\Sigma y^2 = 90$$

Above data is calculated from 20 pairs of observations for variables X and Y.

- 2. Suppose A and B are two independent events, associated with a random experiment. If the probability of occurrence of either A or B is 0.6; while probability that only A occurs is 0.4, then determine the probability of occurrence of event B.
- 3. Suppose 2% of the items made in a factory are defective. Find the probability that there are : 5
 - (i) 3 defectives in a sample of 100
 - (ii) no defectives in a sample of 50
- 4. The mean weekly sales of chocolate packets in different departmental stores was 146.3 packets per store. After an advertisement campaign the mean weekly sales of 22 stores for a typical week increased to 153.7 and showed a standard deviation of 17.2. Was the

advertisement campaign successful at 5% level of significance? (Given $t_{21(0.05)} = 2.08$).

- 5. Differentiate between the following: 5
 - (i) Parametric and Non-Parametric tests
 - (ii) Binomial distribution and Poisson's distribution
- 6. An incomplete frequency distribution is given below:

Class Interval	Frequency
10—20	12
20—30	30
30—40	?
40—50	65
50—60	?
60—70	25
70—80	18

Given that median value of 200 observations is 46. Determine the missing frequencies using the median formula. [4] BCS-040

10

Section—B

7. Using the regression line:

$$\hat{y} = 90 + 50x$$

fill up the values in the table below:

Sample No. (i)	12	21	15	1	24
x_i	0.96	1.28	1.65	1.84	2.35
y_i	138	160	178	190	210
$\hat{\mathcal{Y}}_i$	138				_
$e_i = y_i - \hat{y}_i$	0	_	—	_	_

After filling the table, compute the parameters R and R^2 . Interpret the correlation between X and Y.

8. A chemical firm wants to determine how four catalysts (i.e. 1, 2, 3, 4) differ in their yields?

The firm conducted the experiment in three of its plants (i.e. A, B and C). In each plant, the

yield is measured with each catalyst. The yield (in quintals) is tabulated below: 10

Plant	Catalyst			
Tant	1	2	3	4
A	2	1	2	4
В	3	2	1	3
С	1	3	3	1

Perform an ANOVA and comment whether the yield due to a particular catalyst is significant or not at 5% level of significance. Given $F_{3.6} = 4.76.$

- 9. What do you understand by the term 'Forecasting'? How does forecasting differ from prediction? Give suitable examples in support of your answer. Briefly discuss the forecasting models.
- 10. Telephone directories have telephone numbers which are the combinations of ten digits 0 to 9. The observer notes the frequency of occurrence of these digits and wants to test whether the

digits occur with same frequency or not $(\alpha = 0.05)$. The data is tabulated below:

Digits	Frequency
0	99
1	100
2	82
3	65
4	50
5	77
6	88
7	57
8	82
9	30

(Given that $\chi_{9(0.05)}^2 = 16.918$).

BCS-040 5,100