BACHELOR OF COMPUTER APPLICATIONS (B. C. A.) (Revised)
 Term-End Examination
 December, 2020

BCS-012 : BASIC MATHEMATICS

Time : 3 Hours
Maximum Marks : 100
Note : Question number 1 is compulsory. Attempt any three questions from the remaining questions.

1. (a) Show that:

$$
\left|\begin{array}{lll}
1 & a & a^{2} \\
1 & b & b^{2} \\
1 & c & c^{2}
\end{array}\right|=(a-b)(b-c)(c-a) \text {. }
$$

(b) Use the principle of mathematical induction to prove :

$$
\frac{1}{(1)(2)}+\frac{1}{(2)(3)}+\ldots \ldots+\frac{1}{(n)(n+1)}=\frac{n}{n+1},
$$

where n is a natural number.
(c) Find the sum of n terms, for the series given below :

$$
3+33+333+
$$

\qquad
(d) Evaluate :

$$
\lim _{x \rightarrow 0} \frac{\sqrt{1+2 x}-\sqrt{1-2 x}}{x}
$$

(e) Evaluate :

$$
\int \frac{d x}{\sqrt{x}+x}
$$

(f) If $y=a x+\frac{b}{x}$, show that:

$$
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-y=0
$$

(g) If $1, \omega$ and ω^{2} are the cube roots of unity, show that:
$\left(1+\omega+\omega^{2}\right)^{5}+\left(1-\omega+\omega^{2}\right)^{5}+\left(1+\omega-\omega^{2}\right)^{5}=32$.
(h) Find the value of λ for which the vectors
$\vec{a}=\hat{i}-4 \hat{j}+\hat{k} ; \quad \vec{b}=\lambda \hat{i}-2 \hat{j}+\hat{k} \quad$ and
$\vec{c}=2 \hat{i}+3 \hat{j}+3 \hat{k}$ are coplanar.
2. (a) Solve the following system of equations, using Cramer's rule :

$$
\begin{gathered}
x+2 y+2 z=3 \\
3 x-2 y+z=4 \\
x+y+z=2
\end{gathered}
$$

(b) If $A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$, show that $A^{2}-4 A-5 I_{3}=0$.
(c) If $A=\left[\begin{array}{ccc}3 & 4 & -5 \\ 1 & 1 & 0 \\ 1 & 1 & 5\end{array}\right]$, show that A is row equivalent to I_{3}.
3. (a) Solve the equation $2 x^{3}-15 x^{2}+37 x-30=0$, given that the roots of the equation are in A. P.
(b) If $1, \omega$ and ω^{2} are cube roots of unity, show that $(2-\omega)\left(2-\omega^{2}\right)\left(2-\omega^{10}\right)\left(2-\omega^{11}\right)=49$. 5
(c) Use De-Moivre's theorem to find $(\sqrt{3}+i)^{3} .5$
(d) Find the sum of an infinite G. P., whose first term is 28 and fourth term is $\frac{4}{49}$. 5
4. (a) Determine the values of x for which the following function is increasing and decreasing : 5

$$
f(x)=(x-1)(x-2)^{2}
$$

(b) Find the length of the curve $y=2 x^{3 / 2}$ from the point $(1,2)$ to $(4,16)$.
(c) If $\vec{a}+\vec{b}+\vec{c}=10$, show that:

$$
\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a} .
$$

(d) Solve :

$$
\frac{2 x-5}{x+2}<5, x \in \mathrm{R} .
$$

5. (a) A man wishes to invest at most ₹ 12,000 in Bond-A and Bond-B. He must invest at least ₹ 2,000 in Bond-A and at least ₹ 4,000 in Bond-B. If Bond-A gives return of 8% and Bond-B gives return of 10%, determine how much money, should be invested in the two bonds to maximize the returns. 10
(b) Find the points of local maxima and local minima of the function $f(x)$, given below :

$$
f(x)=x^{3}-6 x^{2}+9 x+100 .
$$

(c) Show that 7 divides $2^{3 n}-1, \forall n \in \mathbf{N}$ i. e. set of natural numbers, using mathematical induction.

BCS-012

