No. of Printed Pages: 5

RCH-002

M. Phil/Ph. D. IN CHEMISTRY (MPHILCHEM/PHDCHEM)

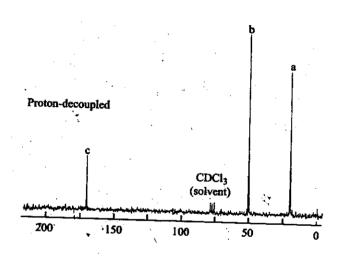
Term-End Examination December, 2019

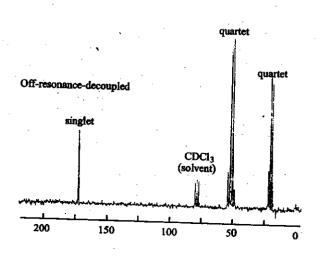
RCH-002 : ANALYTICAL TECHNIQUES IN CHEMISTRY—I

Time: 3 Hours

Maximum Marks: 100

Note: Answer all questions.


- Explain the basic principle of fluorescence spectroscopy and give its applications.
- 2. (a) Predict the λ_{max} for the following molecule:5


745 (B-38) P. T. O.

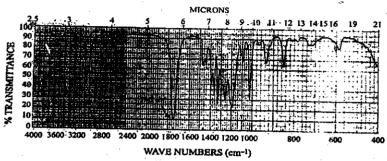
(b) Predict the major fragments giving their m/z values observed in the mass spectrum of the following compounds (M⁺= 148): 5

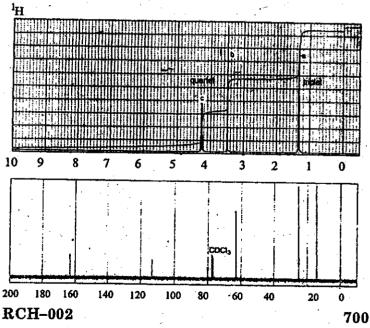
- 3. Briefly discuss various desorption methods used in ionization of compounds in mass spectrometry. Write the advantages and limitations of these methods.
- 4. Briefly discuss the factors affecting intensity and shape of IR signals.
- 5. (a) Assuming the force constant values are approximately the same for C C, C N, C O and C F bonds, predict the relative positions of their stretching vibrations in IR spectra. Justify your answer.
 - (b) Explain with a suitable example the term diamagnetic anisotropy pertaining to NMR spectroscopy.

6. A compound with the formula $C_3H_6O_2$ gives the following proton-decoupled and off-resonance decoupled spectra. Determine the structure of the compound:

(B-38) P. T. O.

7. (a) Draw the expected ¹H-NMR spectrum for the following compound: 5


- (b) Predict the appearance of the ¹⁹F and ²⁹Si -NMR spectra of SiF₄ and explain them.
- 8. Draw and explain the ¹H-NMR spectra of 1, 1, 2-trichloroethane and p-disubstituted benzene (sym).
- 9. (a) Predict a structure which matches with the data provided : 5 $C_5H_{10}O \qquad \delta=1.10 \ (\text{doublet}), \ 2.10 \ (\text{singlet})$ $2.50 \ (\text{septet})$


Integration 6:3:1

 $IR = 1700 \text{ cm}^{-1} \text{ (strong)}$

(b) A compound C_3H_8O in its IR spectrum shows a band at 3300 cm⁻¹. Its ¹H-NMR spectrum shows 4 sets of signals at δ 0.92 (t, 3H); δ 1.58 (sextet, 2H); δ 3.55 (2H, t) and δ 3.85 (s, 1H). Assign a structure to the compound.

10. The following are the IR, ^{1}H -NMR and ^{13}C NMR spectral data for a compound with the molecular formula $\text{C}_{5}\text{H}_{7}\text{NO}_{2}$. Predict its structure with justifications:

