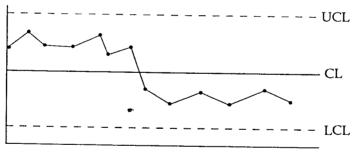
MSTE-001

POST GRADUATE DIPLOMA IN APPLIED STATISTICS (PGDAST)

Term-End Examination

December, 2019


MSTE-001: INDUSTRIAL STATISTICS - I

Time: 3 hours

Maximum Marks: 50

Note: (i) Question no. 1 is compulsory.

- (ii) Attempt any four questions from the remaining questions no. 2 to 7.
- (iii) Use of Scientific calculator (non-programmable) is allowed.
- (iv) Use of Formulae and Statistical Tables Booklet for PGDAST is allowed.
- (v) Symbols have their usual meanings.
- State whether the following statements are True or False. Give reasons in support of your answers.
 - (a) The control chart shown below indicates that, the process is under statistical control.

Sample No.

- (b) In rectifying sampling inspection plan, the outgoing quality remain same as the incoming quality.
- (c) In a double sampling plan, N=400, $n_1=15$, $c_1=1$, $n_2=30$, $c_2=3$, the probability of making a decision about acceptance or rejection of the lot on first sample is 0.8345. Then Average Sample Number (ASN) of this plan will be 20.
- (d) If hazard rate of a component is λ , then reliability of the component will be $e^{-\lambda t}$.
- (e) A saddle point exists in a game when Maximin value is not equal to Minimax value.

2. A toy manufacturing company has been given a large order for small plastic whistles that will be given away by fast-food hamburger chain with its kid's meal. Seven random samples of four whistles have been taken and weight of each whistle is measured. The data are shown as:

Sample No.	Weight (in gram)			
1	4.1	5.2	3.9	5.0
2	3.6	4.3	3.9	4.6
3	4.0	4.8	5.1	5.3
4	5.6	5.8	5.7	5.7
5	3.9	3.8	4.6	4.9
6	5.1	4.7	4.8	4.3
7	4.6	4.4	4.0	4.5

- (a) Estimate the process mean.
- (b) Is the process under statistical control? If necessary, compute revised control limits.
- 3. (a) Mention the advantages of double sampling plan over single sampling plan.
 - A memory card manufacturing company formed lots of 500 memory cards. To check the quality of lots, the buyer uses a double sampling plan with $n_1 = 10$, $c_1 = 0$, $n_2 = 25$, $c_2 = 1$. If the incoming lot quality is 0.04, what is the probability of

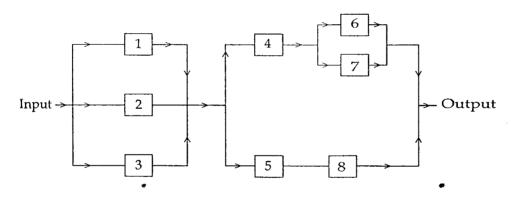
3

• (i) the first sample?

accepting the lot on,

- (ii) the second sample?
- 4. The manager of a Flower Shop purchases roses for ₹ 10 per dozen and sells them for ₹ 30 per dozen. All unsold roses are donated to a local hospital. The information of demand for roses for the past 100 days is as follows:

Dozens of roses	70	80	90	100
No. of days	10	20	40	30


How many dozens of roses should be purchased to maximise its profits?

5. (a) A two-person zero-sum game having the following pay-off matrix for Player A and Player B is as follows:

		Player B		
		B ₁	B ₂	B ₃
Di	A ₁	1	7	2
Player A	A_2	6	2	7
	A_3	5	2	. 6

Obtain the:

- (i) Optimal strategy for Player A,
- (ii) Optimal strategy for Player B,
- (iii) Value of the game,
- (b) Find the system reliability of the following series-parallel configurations. Assume that all components are independent but components 1, 2 and 3 are not identical and at least two components work successfully for system functioning, given : $R_1 = 0.80$, $R_2 = 0.50$, $R_3 = 0.70$, $R_4 = 0.80$, $R_5 = 0.90$, $R_6 = 0.70$, $R_7 = 0.70$, $R_8 = 0.90$.

6. (a) The life of a turbine follows the following failure density function:

$$f(t) = \frac{3t^2}{10^9}$$
; $0 \le t \le 1000$ hours

Calculate:

- (i) Reliability of the turbine,
- (ii) Reliability of the turbine for a 100 hour mission time,
- (iii) Mean time of failure, and
- (iv) Median life of the turbine.
- (b) A manufacturing process produces a certain type of chocolate with a weight of 50 grams and a standard deviation 0.10 grams. The specification limits of the process are 50±2 grams. Is the process capable of meeting the specification requirements?

- 7. (a) A computer manufacturer purchases motherboards in lots of 500. The computer manufacturer uses single sampling plan with n=20, c=1. Suppose, the Acceptance Quality Level (AQL) and Lot Tolerance Percent Defective (LTPD) are 0.04 and 0.10 respectively. If the incoming lot quality is 5%, then calculate the,
 - (i) Probability of accepting the lot,

2+1+1+1

- (ii) Consumer's risk,
- (iii) Average Outgoing Quality (AOQ), if rejected lots are screened and all defective motherboards are replaced by non-defectives, and
- (iv) Average Total Inspection (ATI).
- (b) The number of defective switches in 10 samples each of size 100 are shown in the following table. Construct a suitable control chart for the given data.

Sample Number	Number of Defective	
	Switches	
1	8	
2	1	
3	3	
4	2	
5	2	
6	4	
7	3	
8	1	
9	5	
10	6	

Does the process appear to be in statistical control?