POST GRADUATE DIPLOMA IN APPLIED STATISTICS (PGDAST)

Term-End Examination

December, 2019

MST-003 : PROBABILITY THEORY

Time : 3 hours
Note: (i) Question No. 1 is compulsory.
(ii) Attempt any four questions from the remaining question Nos. 2 to 7.
(iii) Use of Scientific (non-programmable) calculator is allowed.
(iv) Use of Formulae and Statistical Tables Booklet for PGDAST is allowed.
(v) Symbols have their usual meanings.

1. State whether the following statements are True or False. Give reasons in support of your answer.
(a) If $\mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{B})=\mathrm{P}(\mathrm{A} \cap \mathrm{B})$ then $\mathrm{P}[(\mathrm{A} \cap \overline{\mathrm{B}}) \cup(\overline{\mathrm{A}} \cap \mathrm{B})]=1$.
(b) If X is uniformly distributed with mean 1 and variance $4 / 3$, then $P(X<0)=1 / 4$.
(c) A random variable X has the following probability distribution:

x	$:$	0	1	2	3	4	5	6	7
$\mathrm{P}(x):$	0	k	2 k	2 k	3 k	k^{2}	$2 \mathrm{k}^{2}$	$7 \mathrm{k}^{2}+\mathrm{k}$	

Then the value of k is 0.10 .
(d) A continuous random variable X has a pdf $f(x)=\mathrm{k} x^{2} \mathrm{e}^{-x}$ where $x>0$ with mean and variance ' 3 '.
(e) The probability of the $5^{\text {th }}$ hit in $10^{\text {th }}$ draw by a person is 0.72 , if probability of hitting the target at any trial is 0.5 .
2. (a) An urn contains 5 white and 3 green balls and another urn contains 3 white and 7 green balls. Two balls are chosen at random from the first urn and put into the second urn. Then the ball is drawn from the second urn. What is the probability that it is a white ball ?
(b) Two cards are drawn from a pack of 52 cards, find the probability that draw includes an ace and a ten.
3. The Joint probability density function of a bivariate random variable (X, Y) is
$f_{X, Y}(x, y)=\mathrm{k}(x+y), 0<x<2 ; 0<y<2 \quad 2+4+1+3$
$=0$, otherwise
where k is a constant.
(a) Find the value of k.
(b) Find the marginal probability density functions of X and Y.
(c) Are X and Y independent ?
(d) Find the conditional distributions $f_{Y} / X\left(\frac{y}{x}\right)$ and $f_{X / Y}(x / y)$.
4. (a) An item is produced in large numbers. The machine is known to produce 5%

