M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)
 M.Sc. (MACS)

Term-End Examination, 2019

MMTE-005 : CODING THEORY

Time : 2 Hours]

[Maximum Marks : 50
[Weightage : 50\%
Note: Answer any four questions from Question No. 1 to 5. Question No. 6 is compulsory. Calculator is not allowed.

1. (a) Let C_{1} be the [4, 3, 2]-binary linear code generated by $\left[\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1\end{array}\right]$, and let C_{2} be the $[4,1,4]$ - binary linear code generated by [1111]. Give the parameters with justification and find a generator matrix of the $(\underline{u} / \underline{u}+\underline{v})$ construction of the codes C_{1} and C_{2}.
(b) Construct a generator matrix of the Reed-Muller code $R(2,4)$.
[4]
MMTE-005/1000
(c) If a polynomial generator matrix of an (n, k) convolutional code C is basic and reduced, then prove that it is canonical.
2. (a) Let E_{q} have characteristic p. Prove that $(\alpha+\beta)^{p=\alpha^{\rho}+\beta^{p}}$ for all $\alpha, \beta \in E_{q}$.
(b) Find $\operatorname{gcd}\left(x^{5}-x^{4}+x+1, x^{3}+x\right)$ in $E_{3}[x]$.
(c) Construct a $[13,10,3] \mathrm{BCH}$ code over E_{3}.
3. (a) Construct the Tanner graph for the given parity check matrix H of an LDPC code. Further, does the code contain a cycle? Justify your answer.

$$
H=\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

(b) Find the generator matrix of the $(7,4)$ cyclic code generated by the polynomial $g(x)=1+x+x^{3}$.
4. (a) Let C be a self-dual [24, 12, 8] doubly even binary code. Find the weight enumerator of C by using Mac-Williams identities.
(b) Does there exist a QR code of length 17 over F_{11} ? Give reasons for your answer.
5. (a) Show that the Z_{4}-linear codes with generator matrices :

$$
G_{1}=\left[\begin{array}{llll}
1 & 1 & 1 & 3 \\
0 & 2 & 0 & 2 \\
0 & 0 & 2 & 2
\end{array}\right] \text { and } G_{2}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 0 & 0 & 2 \\
0 & 2 & 0 & 2
\end{array}\right]
$$

are monomially equivalent.
(b) If $\underset{\sim}{x}, \underset{\sim}{y} \in \mathcal{F}_{2}^{11}$, show that:
$w t(\underset{\sim}{x}+\underset{\sim}{y})=w t(\underset{m}{x})+w t(\underset{\sim}{y})-2 w t(\underset{\sim}{x} \cap \underset{\sim}{y})$.
where $\underset{x}{\sim} \cap \underline{y}$ is the vector in F_{2}^{n} which has 1 in precisely those positions where $\underset{\sim}{x}$ and $\underset{\sim}{y}$ have 1 .

Further, show that if C is a binary code with a generator matrix, each of whose rows are of even weight, then every codeword of C has even weight.
6. Which of the following statements are true ? Give reasons for your answers in the form of a short proof or a counter example :
(i) The code over E_{3} with generator matrix $\left[\begin{array}{lllll}1 & 2 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 & 1\end{array}\right]$ is self-orthogonal.
(ii) Every cyclic code is self-dual.
(iii) $x^{3}-1+x$ is irreducible over E_{5}.
(iv) Two distinct codes can have the same generator matrix.
(v) The number of 3 -cyclotomic coset modulo 26 is 3 .

