M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc (MACS)

Term-End Examination,
December 2019

MMTE-004: COMPUTER GRAPHICS

Time : $11 / 2$ Hours]
[Maximum Marks : 25
(Weightage: 50\%)
Note: (i) Question No. 1 is Compulsory.
(ii) Attempt any three questions out of questions No. 2 to 5.
(iii) Use of calculator is not allowed.

1. State whether the following statements are True or False. Justify your answers with a short proof or a counter. Example.

10
a) The Midpoint line generation algorithm requires performing integer calculations only.
b) A perspective projection preserves relative proportions.
c) For finding the region of the plane in which the given line lies, a three bit binary code is used by the Cohen Sutherland line clipping algorithm.
d) The simultaneous shearing along both the x-axis and the y-axis is equal to the composition of shear along the x-axis followed by shear along the y-axis.
e) The reflection about the line $y=-x$ is attained by reversing the x and y coordinates.
2. a) Plot a circle at $(5,5)$ having a radius of 5 units using the mid-point circle drawing algorithm. Do three iterations of the algorithm.3
b) Magnify the triangle $P(0,0), Q(2,2)$ and $R(10,4)$ to four times its size while keeping $R(10,4)$ fixed. Also write the coordinates of the magnified triangle. 2
3. a) Perform a 45° rotation of the triangle $\mathrm{A}(0,0)$, $B(1,1)$ and $C(5,2)$
i) About the origin, and
ii) About the point $P(-1,-1)$.
b) Give two differences between cabinet and cavalier projections.
4. a) For a Polygon with the vertices $V 0=(10,20)$, $\mathrm{V} 1=(20,0), \mathrm{V} 2=(30,10), \mathrm{V} 3=(40,0), \mathrm{V} 4=(40,40)$, $\mathrm{V} 5=(30,30), \mathrm{V} 6=(20,40)$ and $\mathrm{V} 7=(30,20)$, prepare an initial sorted edge list and then make the active edge list for scan lines $Y=5,20,30,35$. 3
b) Trace the DDA algorithm for drawing a line segment from $(0,0)$ to $(6,6)$.
5. a) Let $\mathrm{P}(t)$ be the Bezier curve defined over the interval [0, 1]. Prove the following:
i) $P(0)=P_{0} P(1)=P_{n^{\prime}}$;
ii) $\mathrm{P}^{\prime}(0)=n\left(\mathrm{P}_{1}-\mathrm{P}_{0}\right)$,
$\mathrm{P}^{\prime}(1)=n\left(\mathrm{P}_{n}-\mathrm{P}_{n-1}\right)$,
Where n is the degree of the Bezier curve, $\mathrm{P}_{0}, \mathrm{P}_{1}, \ldots . \mathrm{P}_{\mathrm{n}}$ are its control points and P^{\prime} is $\frac{d \mathrm{P}(t)}{d t}$.
b) Use the Liang Barsky Line clipping algorithm to clip a line segment with end points P1 $(-15,-30)$, P2 $(30,60)$, against a clipping window having diagonally opposite corners as $(0,0)$ and $(15,15)$.

$$
\diamond \diamond \diamond \diamond \diamond \diamond
$$

