No. of Printed Pages : 4

MMT-006

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

M.Sc. (MACS)

Term-End Examination, 2019

MMT-006 : FUNCTIONAL ANALYSIS

Time : 2 Hours

Maximum Marks : 50

Weightage: 70%

Note: Question No. 6 is compulsory. Attempt any four of the remaining questions.

1. (a) Find an inner product on \mathbb{R}^3 such that the unit sphere is the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1, a, b, c > 0.$ [3] (b) If the unit sphere $\{x \in X^* : ||x|| = 1\}$ in a normed space X is complete, prove that X is complete.

[4]

MMT-006/1200

- Use F.Riesz Lemma to show that the closed unit ball in an infinite dimensional Banach space is not compact.
- 2. (a) *H* is a Hilbert space, *A*: *H* → *H* is linear and < *Ax*, *y* >=< *x*, *Ay* > for all *x*, *y* ∈ *H*. Use the closed graph theorem to show that *A* is continuous. [3]
 - (b) Show that $\|\cdot\|_{\infty}$ and $\|\cdot\|_{1}$ are not equivalent on C[0,1]. [4]
 - (c) Prove directly that the dual space of a normed space is complete. [3]

3.

(a)

Let $\{e_n\}$ be the canonical basis in l^2 and let $u_n = \frac{n}{n+1}e_n$ for all n. Show that every $x \in l^2$

has a norm convergent expansion of the form $x = \sum a_n u_n$. [3]

(b) Let f be a bounded linear functional on a subspace M of a normed space X and let $x_0 \in X, x_0 \notin M$. Prove that f has an extension g to $N = \text{span } M \cup \{x_0\}$ such that $\|g\| = \|f\|$. [3] MMT-006/1200 (2)

- (c) Show that a linear map $T: X \to Y$ between normed spaces is continuous if and only if $\{Tx_n\}$ is a Cauchy sequence in Y for every Cauchy sequence $\{x_n\}$ in X. [4]
- 4. (a) If M is a closed subspace of a Hilbert space H, then $H = M \oplus M^{\perp}$. Prove. [4]
 - (b) $\{T_n\}$ is a sequence of bounded linear maps on a Banach space X and $Tx = \frac{\lim_{n \to \infty} T_n x}{x}$ exists for all $x \in X$. Show that T is a bounded linear operator. [3]
 - (c) Calculate ||T|| where T is defined on $\left(C[0,1], ||.||_{\infty}\right)$ by $Tf(x) = \int_{0}^{x} f(t)dt, 0 \le x \le 1$.
 [3]

5. (a) Let H be a Hilbert space and fix $u, v \in H$. Define $Ax = \langle x, u \rangle v, x \in H$. Prove that A is compact and determine A^* . [4]

(b) Let X be a reflexive Banach space show that X' is reflexive. [2]

MMT-006/1200

[P.T.O.]

- (c) Let $M = \{(x_n) \in l^2 : x_1 + x_2 = 0\}$ Show that M is a closed subspace and find an orthonormal basis for M. [4]
- 6. State whether the following statements are True or False.Justify your answers : [5x2=10]
 - (a) The sequence $\{u_n = e_1 + \dots + e_n\}$ has no limit in l^1 .
 - (b) If f is a linear functional on \mathbb{R}^2 such that f(1,1) = 0 = f(1,-1), then $f \equiv 0$:
 - (c) It follows from the open mapping theorem that any non-zero linear functional on a Banach space is an open map.
 - (d) If M is a closed subspace of a Hilbert space H, then the projection theorem implies $\frac{H}{M}$ is a Hilbert space.
 - (e) For a bounded linear map A on a Banach space, if $\sigma(A) = \{0\}$, then A = 0.

MMT-006/1200

(4)