106815

No. of Printed Pages : 2

MASTER OF SCIENCE
 (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCES) [MSC (MACS)]
 Term-End Examination
 December, 2019
 MMT-005 : COMPLEX ANALYSIS

Time: $1 \frac{1}{2}$ Hours
Maximum Marks : 25

Note : Question No. 1 is compulsory. Attempt any three questions out of Q. nos. 2 to 5. Use of calculator is not allowed.

1. State giving reasons whether the following statements are true or false :
($5 \times 2=10$)
(a) The function $f(z)=e^{-z^{-4}}$ has pole at $z=0$.
(b) Radius of convergence of

$$
\sum\left(\frac{6 k+1}{2 k+5}\right)^{k}(z-2 i)^{k} \text { is } \frac{1}{2}
$$

(c) $\mathrm{W}=\sqrt{z}$ is a multi-valued function.
(d) $\cos |z|^{2}$ is analytic.
(e) There is no $z \in \Gamma$ such that $\sin z=10$.
2. (a) Show that if f is analytic inside and on a closed contour C and f^{\prime} is continuous, then

$$
\begin{equation*}
\int_{C} f(z) d z=0 \tag{3}
\end{equation*}
$$

(b) If $f(z)=u+i v$ is an analytic function of $z=x+i y$ and $u+v=(x+y)$ $\left(2-4 x y+x^{2}+y^{2}\right)$, then find the analytic function $f(z)$.
3. (a) Construct a linear fractional transformation that maps the points $-1,1, \infty$ on the line $y=x-1$ onto the points $1, i,-1$ on the unit circle $|w|=1$. 3
(b) Find the Laurent series representation of the function $f(z)=\frac{z}{z^{2}-9}$ in the region $1<|z+3|<3$.
4. (a) Evaluate the integral $\int_{C} \frac{d z}{z(2 z-1)(z+2)}$, where C is the unit circle.
(b) Find the residue of $f(z)=\frac{\sin z}{z^{2 n+1}}$ at $z=0.2$
5. Evaluate $\int_{0}^{\infty} \frac{d x}{1+x^{4}}$.

